• Title/Summary/Keyword: crystal defect

Search Result 283, Processing Time 0.019 seconds

Polymeric Additive Influence on the Structure and Gas Separation Performance of High-Molecular-Weight PEO Blend Membranes (고분자량 PEO 기반 분리막에 대한 다양한 고분자 첨가제의 영향 분석)

  • Hyo Jun Min;Young Jae Son;Jong Hak Kim
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.192-203
    • /
    • 2024
  • The advancement of commercially viable gas separation membranes plays a pivotal role in improving CO2 separation efficiency. High-molecular-weight poly(ethylene oxide) (high-Mw PEO) emerges as a promising option due to its high CO2 solubility, affordability, and robust mechanical attributes. However, the crystalline nature of high-Mw PEO hinders its application in gas separation membranes. This study proposes a straightforward blending approach by incorporating various polymeric additives into high-Mw PEO to address this challenge. Four commercially available, water-soluble polymers, i.e. poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP) are examined as additives to enhance membrane performance by improving miscibility and reducing PEO crystallinity. Contrary to expectations, PEG and PPG fail to inhibit the crystalline structure of PEO and result in membrane flaws. Conversely, PAA and PVP demonstrate greater success in altering the crystal structure of PEO, yielding defect-free membranes. A thorough investigation delves into the correlation between changes in the crystalline structure of high-Mw PEO blend membranes and their gas separation performance. Drawing from our findings and previously documented outcomes, we offer insights into designing and selecting additive polymers for high-Mw PEO, aiming at the creation of cost-effective, commercially viable CO2 separation membranes.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Alveolar ridge preservation using granulation tissue for esthetic implant restoration on maxillary anterior tooth (상악 전치부의 심미적 임플란트 수복을 위한 육아 조직(Granulation tissue)을 이용한 치조제 보존술)

  • Lee Chang Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.32 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • Esthetic factors are very important in the success of maxillary anterior implant restoration. However, achieving esthetic results is difficult, especially in cases where periodontitis has resulted in severe alveolar bone loss. In the case of maxillary anterior teeth, the alveolar ridge resorption that begins immediately after tooth extraction interferes with the esthetic implant restoration. Therefore immediate implant placement can be performed to minimize the alveolar ridge resorption. However, in severe bone loss cases, immediate implant placement could result in esthetic failure, and this result might cause irreparable problems. We can also perform alveolar ridge preservation and then place implants later. On JCP published in 2019, there is the consensus of European academy of periodontology on the extraction socket management and the timing of implant placement. This consensus states that alveolar ridge preservation should be considered when there is severe labial bone loss in an esthetically important area such as maxillary anterior region. On performing the alveolar ridge preservation, we cannot obtain the primary wound closure, so secondary wound healing is induced with open membrane technique or soft tissue grafting should be performed for primary wound closure. However, the secondary wound healing can have a negative impact on bone regeneration, and soft tissue grafting such as FGG or CT graft can be burdensome for both patients and dentists. On the other hand, by using the granulation tissue in the extraction socket, primary closure can be achieved without soft tissue grafting. Also some studies have shown that granulation tissue in periodontal defects contains stem cells that may help in tissue regeneration. Based on this, implant restorations were performed on maxillary anterior teeth with severe alveolar bone loss by alveolar ridge preservation using granulation tissue. In spite of the severe bone defect of the extraction socket, relatively esthetic results could be obtained in implant restorations.