• Title/Summary/Keyword: cryosorption pump

Search Result 3, Processing Time 0.046 seconds

Large Cryosorption Pump for the NBI Test Stand

  • In, S.R.;Shim, H.J.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2003
  • A large cryo-pumping system composed of 4 cryosorption pumps was designed and manufactured to satisfy the pressure requirements of the NBI test stand. The cryosorption pump consists of a thermal shield/baffle assembly and a cryopanel coated with activated carbon granules. The thermal shield is cooled by liquid nitrogen, and the cryopanel by a commercial helium refrigerator. The operation characteristics and vacuum performance of the cryosorption pump were investigated. The cooling down time of the cryopanel to 20 K was about 6 hours with a liquid nitrogen consumption rate of about 35 L/hr. The maximum pumping speed of the cryosorption pump for the hydrogen gas measured by the steady pressure method was about 90,000 L/s.

  • PDF

Hydrogen adsorption properties of the large cryosorption pump (대용량 크라이오 펌프의 수소 흡착특성)

  • In S. R.;Kim T. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • Pumping performance of large cryosorption pumps of different types installed on the 60 $m^3$ test stand for developing and testing ion sources and beam line components of the NBI system was investigated. Hydrogen adsorption and desorption characteristics of the cryosorption panels were analyzed using the temporal change of the hydrogen spectrum obtained with short introduction of the hydrogen gas as cooling the panel, and simulations on the mutual influence between related parameters were also carried out.

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.