• Title/Summary/Keyword: crustal species

Search Result 16, Processing Time 0.021 seconds

Effects of Crustal Species on Characteristics of Aerosols: Simulation of Measurements at Kosan, Cheju Island, 1994 (토양 성분이 입자 특성에 미치는 영향: 제주도 고산에서의 1994년 측정결과 모사)

  • 김용표;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 1996
  • Effects of crustal species on the characteristics of ambient particles were studied by applying a gas-particle equilibrium model, SCAPE, to the measurements at Kosan, Cheju Island during the spring and summer, 1994. Two cases were simulated; the measured composition was used without any modification (case 1), and the metal ion concentrations originated from crust were subtracted from the measured particle composition (case 2). Total suspended particles (TSPs) were collected by an automatic high volume tape sampler during spring period and by high volume samplers during summer period. The fine particles, PM 2.5, and gaseous volatile species were collected using a filter pack smapler during summer period. The water soluble ion concentrations were analyzed from all the particle samples. According to the simulation results, the effect of crustal elements on the chemical composition of particles is negligible for both TSP particles and PM 2.5 particles. Acidity of particles measured at Kosan, however, is affected by the change of the concentrations of crustal species, stronger effects for TSP particles than for PM 2.5 particles during summer, and stronger effects during summer than spring for TSP particle. The average pH decrease due to the absence of crustal species was about 0.10 for PM 2.5 particle during summer and 1.51 and 0.85 for TSP particles during summer spring, respectively. Water contents of PM 2.5 particles for both cases are comparable to each other. Estimated water content of TSP particles for case 2 is higher than that for case 1 by about 4 $\sim 6 \mum/m^3$ because salts of metal ions are not hygroscopic.

  • PDF

Characteristics of Nitrate Concentration Measured at Gosan: Measurement Data of PM2.5 and TSP between 1998 and 2002 (고산에서 측정한 입자상 질산염 농도 특성: 1998∼2002년 PM2.5와 TSP 측정자료)

  • 김나경;김용표;강창희;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2004
  • The nitrate concentrations in PM$_{2.5}$ and TSP measured at Gosan, Jeju Island, Korea, between March 1998 and February 2002, are discussed. Especially, the characteristics of high nitrate concentration days were analyzed. High nitrate concentration cases in PM$_{2.5}$ were highly correlated with anthropogenic species such as NH$_4$$^{[-10]}$ , and high nitrate concentration cases in TSP were highly correlated with crustal species such as nss-Ca$^{2+}$ and nss -Mg$^{2+}$ Backward trajectory analysis results show the cases of high correlation between nitrate and anthropogenic species occurred when the air parcels moved from China, and the cases of high correlation between nitrate and crustal species occurred when the air parcels moved from Mongolia. Also, high nitrate concentration cases occurred most often in spring (65%) when the air parcels moved from Mongolia and China.ina.

Toxic Trace and Earth Crustal Elements of Ambient PM2.5 Using CCT-ICP-MS in an Urban Area of Korea

  • Lee, Jin-Hong;Jeong, Jin-Hee;Lim, Joung-Myung
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS) was used to measure the concentrations of approximately 19 elements associated with airborne PM2.5 samples that were collected from a roadside sampling station in Daejeon, Korea. Standard reference material (SRM 2783, air particulate on filter media) of the National Institute of Standards and Technology was used for the quality assurance of CCT-ICP-MS. The elemental concentrations were compared statistically with the certified (or recommended) values. The patterns of distribution were clearly distinguished between elements with their concentrations ranging over four orders of magnitude. If compared in terms of enrichment factors, it was found that toxic trace elements (e.g., Sb, Se, Cd, As, Zn, Pb, and Cu) of anthropogenic origin are much more enriched in PM2.5 samples of the study site. To the contrary, the results of the correlation analysis showed that PM2.5 concentrations can exhibit more enhanced correlations with the elements (e.g., Fe, K, Si, and Ti) arising from earth's crust. The findings of strong correlations between PM2.5 and the elements of crustal origin may be directly comparable with the dominant role of those species by constituting a major fraction of even PM2.5 as well as PM10 at the roadside area.

Aerosol Composition Change due to Yellow (황사/비황사의 입자 조성 변화: 1993~1996년 봄철 고산 측정자료)

  • 박민하;김용표;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.487-492
    • /
    • 2001
  • In this technical information, the springtime TSP measurement data between 1993 and 1996 at Kosan are presented. Based on the data, it was found that the concentrations of crustal species increase when Yellow Dust phenomenon occurs. Among anthropogenic species, the concentration of Pb and NO$_3$$^{[-10]}$ increase when Yellow Dust phenomenon occurs. Further research agenda are discussed to study the effects of Yellow Dust.

  • PDF

Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004 (익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Characteristics of Son Concentrations of PM2.5 Measured at Gosan: Measurement Data between 1998 and 2002 (고산에서 측정한 PM2.5 이온 농도 특성: 1998~2002년 측정자료)

  • 김나경;김용표;강창희;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.333-343
    • /
    • 2003
  • The aerosol ionic composition of P $M_{2.5}$ measured at Gosan, Jeju Island, Korea, for 4 years between March 1998 and February 2002 are presented and discussed. The annual mean concentration of non- sea-salt sulfate (nss -S $O_4$$^{2-}$) and ammonium (N $H_4$$^{+}$) ions are high (0.094 $\mu$eq/㎥, and 0.085 $\mu$eq/㎥, respectively). Also, nss-S $O_4$$^{2-}$ and N $H_4$$^{+}$ show high correlation (0.892). The concentrations of most ions are high in springtime. As the result of factor analysis, Gosan area mainly affected by sea-salt, anthropogenic species, and crustal species.ies.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju (겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사)

  • Ko, Jae-Min;Bae, Min-Suk;Park, Seung Shik
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

Chemical Mass Composition of Ambient Aerosol over Jeju City (제주시 지역 미세먼지의 변동과 화학적 구성 특성)

  • Lee, Ki-Ho;Kim, Su-Mi;Kim, Kil-Seong;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.495-506
    • /
    • 2020
  • This study investigated the nitrate formation process, and mass closure of Particulate Matter (PM) were calculated over the urbanized area of Jeju Island. The data for eight water-soluble inorganic ions and nineteen elements in PM2.5 and PM10 were used. The results show that the nitrate concentration increased as excess ammonium increased in ammonium-rich samples. Furthermore, nitrate formation was not as important in ammonium-poor samples as it was in previous studies. According to the sum of the measured species, approximately 45~53% of gravimetric mass of PM remained unidentified. To calculate the mass closure for both PM2.5 and PM10, PM chemical components were categorized into secondary inorganic aerosol, crustal matter, sea salt, trace matter and unidentified matter. The results by the mass reconstruction of PM components show that the portion of unidentified matter was decreased from 52.7% to 44.0% in PM2.5 and from 45.1% to 29.1% in PM10, despite the exclusion of organic matter and elemental carbon.

A Study on the Development of Source Profiles for Fine Particles (PM2.5) (미세입자(PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • 이학성;강충민;강병욱;이상권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.317-330
    • /
    • 2004
  • The Purpose of this study was to develop the P $M_{2.5}$ source Profiles, which are mass abundances (fraction of total mass) of a chemical species in P $M_{2.5}$ source emissions. The source categories studied were soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal-fired power plant, biomass burning, and marine. The chemicals analyzed were ions. elements. and carbons. From this study, soil source had the crustal components such as Si, hi, and Fe. In the case of road dust. Si, OC, Ca, Fe had large abundances. The abundant species were S $O_4$$^{2-}$, C $l^{[-10]}$ , N $H_4$$^{+}$, and EC in the gasoline vehicle and EC, OC, C $l^{[-10]}$ , and S $O_4$$^{2-}$ in the diesel vehicle. The main components were S $O_4$$^{2-}$, S N $H_4$$^{+}$, and EC in the industrial source using bunker C oil as fuel, C $l^{[-10]}$ , N $H_4$$^{+}$, Fe, and OC in the municipal incinerator source, and Si, Al, S $O_4$$^{2-}$, and OC in the coal -fired power plant source. In the case of biomass burning, OC, EC, and C $l^{[-10]}$ were mainly emitted. The main components in marine were C $l^{[-10]}$ , N $a^{+}$, and S $O_4$$^{2-}$.EX> 2-/.