• Title/Summary/Keyword: crustal magnetic anomaly

Search Result 12, Processing Time 0.02 seconds

New Approach in Magnetic Potential Field Continuation by FFT (FFT를 이용한 자력 포텐셜필드 자료의 수직방향의 연속에 대한 새로운 접근방법)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Suh, Man-Cheol;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In general, a crustal geomagnetic (or gravity) anomaly compiled at one altitude can be estimated at a different altitude by continuation using the Fourier transform (FT). However, in case of continuation with a great distance between the two elevations, or, in particular, in case of downward continuation, the estimated anomalies by the FT are likely to be mathematically unstable so that the estimated values are not realistic. To solve this problem, two independently measured magnetic field anomalies at different altitudes, such as aeromagnetic and satellite magnetic observations, are implemented to estimate values at in-between altitude for better understanding and interpreting geophysical and geological features. This ‘'dual continuation’' technique is straightforward in the FT and gives a more realistic estimate in all altitudes when we simulated with a set of prismatic bodies at different altitudes. This implies that we add up another constraint like satellite-based observations on the geopotential field modeling for the non-unique geological and geophysical problems to a conventional Fourier-type continuation technique with a single set of observations.

Crustal Characteristics and Structure of the Ulleung Basin, the East Sea (Japan Sea), Inferred from Seismic, Gravity and Magnetic Data (탄성파 및 중자력자료에 의한 울릉분지의 지각특성 및 구조 연구)

  • Huh, Sik;Kim, Han-Jun;Yoo, Hai-Soo;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2000
  • Depths to four seismic sequence boundaries and the thickness of each sequence were estimated and mapped based on multi-channel seismic data in the Ulleung Basin. These depth-structure and isopach maps were incorporated into the interpretation of gravity and magnetic anomaly maps. The sediment thickness ranges from 3,000 m to 4,000 m in the central basin, while it reaches 6,000 m locally along the southwestern, western, and southeastern margins. The acoustic basement forms a northeast-southwest elongated depression deeper than 5000 m, and locally deepens up to 7,500 m in the southwestern and western margins. Low gravity anomalies along the western and southern margins are associated with basement depressions with thick sediment as well as the transitional crust between the continental and oceanic crusts. Higher gravity anomalies, dominant in the central Ulleung basin, broaden from southwest toward northeast, are likely due to the shallow mantle and a dense crust. A pair of magnetic elongations in the southeastern and northwestern margins appear to separate the central Ulleung basin from its margin. These magnetic elongations are largely dominated by intrusive or extrusive volcanics which occurred along the rifted margin of the Ulleung basin formed during the basin opening. The crust in the central Ulleung Basin, surrounded by the magnetic elongations, is possibly oceanic as inferred from the seismic velocity. The oceanic crust can be mapped in the central zone where it widens to 120 km from the southwest toward northeast. Bending of the crustal boundary in the southern part of the Ulleung Basin suggests that the Ulleung Basin has been deformed by a collision of the Phillipine plate into the Japan arc.

  • PDF