• Title/Summary/Keyword: crumb tire

Search Result 15, Processing Time 0.02 seconds

Mechanical Properties of Composites of HDPE and Recycled Tire Crumb (폐타이어 분말과 고밀도 폴리에틸렌 복합재료의 기계적 물성)

  • Kwak, Sung-Bok;Choi, Mi-Ae;Lee, Seong-Jae
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • For a purpose of recycling of waste tires, composites of 10-60wt% recycled tire crumb blended with high density polyethylene(HDPE) were prepared, and their mechanical properties such as tensile strength, elongation at break, tensile modulus and impact strength were investigated as a function of tire crumb content. Ethylene-acrylic acid(EAA) copolymer was introduced by 10phr as a compatibilizer and the mechanical properties of the composites were measured. For the blend composition of 40wt% tire crumb content showing improved impact strength, the mechanical properties were measured by varying the EAA content of 5-15phr. All blends, whether modified or unmodified, showed a gradual improvement in impact strength as the tire crumb content increased, but the other properties decreased compared with the pure HDPE. In particular, the addition of EAA copolymer to the tire crumb content over 30wt% showed substantial improvement in impact strength. There was no significant effect of tire crumb size on impact strength of the composites.

  • PDF

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

To Study the Effect on Concrete Strength by Adding Waste Rubber Material from Worn Out Tires

  • Aleem, Muhammad;Ejaz, Naeem;Janjua, Nasir Sadiq;Gill, Tanveer;Sadiq, Muhammad Yasir
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.694-701
    • /
    • 2022
  • This paper introduces a study of concrete structures with a broken tire and a flat tire as a complete overhaul. The materials used to make concrete in this study are solid aggregate, cement, sand, flat tire, broken wheel, drinking water, and Ordinary Portland Cement. A total of 6 main compounds were thrown into solid cylinders and replaced by 0% as a controller followed by 5% and 10%. The cylinder pressure test of the concrete is done by applying the same pressure to the cylinders until a failure occurs. The results of the pressure test show that by applying 5% aggregation the pressure decreases. In Crumb wheel joints, the compression force decreases constantly as the percentage change increases. Therefore, the crumb wheel is not recommended for use as a complete replacement due to its compressive church power.

  • PDF

Environmental Friendly Characteristics of CRM Asphalt Concrete and Optimal Mixing Ratio (CRM 아스팔트의 최적 혼합비와 환경친화적 특성)

  • Ryu, Byeong-Ro;Han, Yang-Su
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.311-314
    • /
    • 2001
  • The asphalt mixture with CRM(Crumb Rubber Modifier) is known to show a better performance in resisting thermal cracking, fatigue cracking and rutting compared with the conventional mixture. The laboratory tests on the physical characteristics of indirect tensile strength, density, flow and Marshall value of the CRM asphalt were conducted. The test results show that CRM asphalt has better physical characteristics than that of conventional asphalts. And the analysis on the noise reduction effect, penetration capacity from the field test on the national road in Haksan of Chungbuk, and recycling of tire waste were conducted. From this study, the results show that 1% CRM asphalt has higher the noise reduction effect and penetration capacity that those of conventional asphalts. And, optimal contents of crumb rubber modifier in the asphalt binder is one percent. In this case, crumb rubber modifier were used 10 kg to make the asphalt binder of one cubic meter. So it was named as Eco-asphalt.

  • PDF

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbe-population Distribution of Biofilter with Improved Design (악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 1. 개선된 바이오필터설계에 의한 압력강하와 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.127-135
    • /
    • 2013
  • In this study, both pressure drop and microbe-population-distribution were observed while running a novel biofilter system with improved design in which the biofilter system is composed of two, upper and lower biofilters with both equal feed-rates of up-flow and down-flow, respectively. Then they were compared with the pressure drop and microbe-population-distribution observed in a conventional biofilter of the same effective volume with unidirectional flow. The pressure drop-value of biofilter system with improved design turned out to be less at the incipient stage of run or steady-state long term operation by more than 40~80% of that of the conventional biofilter. The microbe-population-distribution was observed to be lower and higher at higher and lower column of biofilter, respectively, for both the conventional biofilter and the biofilter system with improved design. The microbe-media of waste-tire crumb showed much greater CFU counts than GAC. In the biofilter system with improved design, the $bottom{\rightarrow}up$ feeding of waste air showed greater microbe-population growth than the $top{\rightarrow}down$ feeding for both the microbe-media of waste-tire crumb and GAC. However, it was more prominent for the former than the latter. Comparing the microbe-population-distributions of both of the conventional biofilter and the biofilter system with improved design, the microbe-population of latter was distributed ca. 15 and 2.5 times more evenly for GAC and the media of waste-tire crumb, respectively, than that of former.

Experimental Lnvestigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete

  • Khorrami, Morteza;Vafai, Abolhassan;Khalilitabas, Ahmad A.;Desai, Chandrakant S.;Ardakani, M. H. Majedi
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The feasibility of the use of scrap tire rubber in concrete was investigated. The tests conducted in two groups: replacing of coarse aggregates with crumb rubber and cement particles with rubber powder. To distinguish the properties of new concrete, the following mechanical and durability tests were designed: compressive, tensile and flexural strength, permeability and water absorption. Rubber addition could affect the concrete properties depend on the type and percentage of the rubber added. Although the rubber addition modifies the mechanical characteristics of concrete in a way, but higher rubber content could not be useful. Concrete durability showed more dependency to the type of rubber instead of percentage of rubber. Moreover, to optimize the mechanical and durability of rubberized concrete, the useful percentage of rubber has been recommended.

Experimental investigation on durability performance of rubberized concrete

  • Guneyisi, Erhan;Gesoglu, Mehmet;Mermerdas, Kasim;Ipek, Suleyman
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.193-207
    • /
    • 2014
  • The study presented herein aims to investigate the durability related properties of rubberized concrete. Two types of waste scrap tire rubber were used as fine and coarse aggregate, respectively. The rubber was replaced with aggregate by three crumb rubber and tire chips levels of 5, 15, and 25% for the rubberized concrete productions. In order to improve the transport properties and corrosion resistance of rubberized concretes, SF was replaced with cement at 10% replacement level by weight of total binder content. The transport properties of the rubberized concretes were investigated through water absorption, gas permeability, and water permeability tests. The corrosion behavior of reinforcing bars embedded in plain and silica fume based rubberized concretes was investigated by linear polarization resistance (LPR) test. The results indicated that the utilization of SF in the rubberized concrete production enhanced the corrosion behavior and decreased corrosion current density values. Moreover, the reduction in the water and gas permeability coefficients was observed by the incorporation of SF in plain and especially rubberized concretes.