International Journal of Advanced Culture Technology
/
제8권4호
/
pp.167-176
/
2020
Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.27-33
/
2021
The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.
최근 자율주행 자동차가 일으킨 사고 때문에 인공지능의 윤리적 측면에 대한 논의가 활발히 진행되고 있다. 본 논문은 인공지능이 윤리적 요소와 필연적으로 결부되어 있음을 로봇-인공지능 윤리 관련 개념과 공학기술로부터 확인하고 윤리적 측면이 사후적으로 발생하는 것이 아니라 내장되어 있음을 논한다. 또한, 자율주행 자동차와 관련된 윤리적 문제의 실마리가 될 수 있는 트롤리 딜레마에 대한 해결방법을 고안한다. 우선적으로 베이지안 네트워크를 작성하고 전처리 과정을 거쳐 중요하고 영향력 있는 데이터만 남도록 하며, 네트워크의 정확한 수치를 계산하기 위해 크라우드 소싱과 외삽법을 이용한다. 이러한 과정을 통해 알고리즘 및 모델을 구현할 때에 인간의 주관이 필연적으로 포함될 수밖에 없음을 주장하고 인공지능 시스템에 관한 왜곡과 편향을 방지하기 위해 전공 교육과 구분되는 공학 교양 교육, 특히 윤리 교육의 필요성과 방향에 대해 논한다.
운전자가 모바일기기를 사용하여 직접 교통 정보를 제공하는 크라우드 소싱을 활용하여 교통 문제를 해결하려는 연구들이 진행 중이다. 크라우드 소싱을 통해 수집된 데이터를 교통 이벤트 검출에 사용한다면 관련된 데이터를 수집하는 작업이 줄어들어 시간 비용이 낮아지고 정확도는 높아지는 장점이 있다. 본 논문에서는 크라우드 소싱을 활용하여 교통과 관련된 데이터를 수집하고, 이를 통해 교통에 영향을 미치는 이벤트를 검출하는 기법을 제안한다. 제안하는 기법은 대용량 데이터 처리를 위해 기계 학습 알고리즘을 사용하여 수집된 데이터의 이벤트 유형을 판별한다. 또한, 이벤트가 발생된 위치를 추출하기 위하여 수집된 데이터에서 위치를 나타내는 키워드를 추출하고 키워드의 행정구역을 반환한다. 이를 통해 기존 제공되는 위치 정보에서 광범위하게 정의된 위치나 잘못된 위치 정보를 해결할 수 있다. 제안하는 기법의 타당성을 입증하기 위해 다양한 성능 평가를 수행한다.
딥러닝 기술의 발전에 따라 학습을 통해 선호도 랭킹 추정을 하기 위한 다양한 연구 개발이 진행되고 있으며, 웹 검색, 유전자 분류, 추천 시스템, 이미지 검색 등 여러 분야에 걸쳐 이용되고 있다. 딥러닝 기반의 선호도 랭킹을 추정하기 위해 근사(approximation) 알고리즘을 이용하는데, 이 근사 알고리즘에서 적정한 정도의 정확도를 보장할 수 있도록 모든 비교 대상에 k번 이상의 비교셋을 구축하게 되며, 어떻게 비교셋을 구축하느냐가 학습에 영향을 끼치게 된다. 이 논문에서는 크라우드 소싱 기반의 딥러닝 선호도 측정을 위한 쌍체 비교 셋을 생성하는 새로운 알고리즘인 k-disjoint 비교셋 생성 알고리즘과 k-체이닝 비교셋 생성 알고리즘을 제안한다. 특히 k-체이닝 알고리즘은 기존의 원형 생성 알고리즘과 같이 데이터 간의 연결성을 보장하면서도 안정적인 선호도 평가를 지원할 수 있는 랜덤적 성격도 함께 가지고 있음을 실험에서 확인하였다.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.205-211
/
2022
Performing the rituals of Hajj and Umrah is an obligation of Allah Almighty to all Muslims from all over the world. Millions of Muslims visit the holy mosques in Makkah every year to perform Hajj and Umrah. One of the most important pillars in Performing Hajj/Umrah is Tawaf and Sa'ay. Tawaf finished by seven rounds around the holy house (Al-Kabaa) and Sa'ay is also seven runs between As-Safa and Al-Marwa. Counting/knowing the number of runs during Tawaf/Sa'ay is one of the difficulties that many pilgrims face. The pilgrim's confusing for counting (Tawaf/Sa'ay) rounds finished at a specific time leads pilgrims to stay more time in Mataff bowl or Masa'a run causing stampedes and more crowded as well as losing the desired time for prayers to get closer to Almighty Allah in this holy place. These issues can be solved using effective crowd management systems for Tawaf/Sa'ay pillars, which is the topic of this research paper. While smart devices and their applications are gaining popularity in helping pilgrims for performing Hajj/Umrah activities efficiently, little has been dedicated for solving these issues. We present an autonomous Mobile-based framework for guiding pilgrims during Tawaf/Sa'ay pillars with the aid of GPS for points tracking and rounds counting. This framework is specially designed to prevent and manage stampedes during Tawaf/Sa'ay pillars, by helping pilgrims automatically counting the rounds during Tawaf/Sa'ay with supported Supplications (in written/audio form with different languages) from the Quran and Sunna'a.
본 논문에서는 기하학 기반의 사운드 생성 기법을 활용하여 1)다중 음원, 2)바람의 이류와 3)온도에 따른 상호작용을 효율적으로 처리할 수 있는 방법을 제시한다. 최근에 절감된 광선추적법(Reduced raytracing) 기반으로 사운드(Sound) 위치를 업데이트하고 많은 레이(Ray)의 재귀적인 반사/굴절 없이 사운드 전파와 회절을 효율적으로 계산하는 방법이 제안되었지만, 이 접근법은 사운드의 전파 특징만을 고려했지 다중 음원, 바람의 이류와 온도에 따른 상호작용은 고려하지 못했다. 이러한 한계는 정적인 사운드만 생성하기 때문에, 다양한 가상환경에서 사운드를 통한 장면 제작을 어렵게 만든다. 본 논문에서는 여러 개의 사운드가 배치된 상황에서 사운드 맵을 효율적으로 구성할 수 있는 방법과 이것을 통해 효율적으로 에이전트의 움직임을 제어할 수 있는 방법을 제시한다. 뿐만 아니라 바람의 이류와 온도를 고려하여 사운드 전파를 제어를 할 수 있는 방법을 제안한다. 본 논문에서 제안하는 방법은 사운드를 기반으로 콘테츠 몰입을 개선시킬 수 있는 게임뿐만 아니라 메타버스 환경 디자인, 군중 시뮬레이션 등 다양한 분야에서 활용이 가능하다.
2020년에 경찰청에서 조사한 자료에 따르면 38,496건 중에 미해결 사건이 161건으로, 미해결 원인 중 가장 높은 성인실종자의 경우는 대부분 단순 가출로 평가된다. CCTV를 통해 영상을 통해 찾는 경우에도 수많은 사람이 지나가는 상황에 인물들의 얼굴을 일일이 확인하고 진술의 특징들로만 인물을 찾아내야 하기 때문에 긴 시간이 걸리고 정확도가 낮아 수사에 많은 시간이 소요되는 것이 확인되었다. 본 논문은 MTCNN을 활용하여 CCTV 속 인물 추출에 대한 연구를 진행하였다. MTCNN으로 학습된 얼굴들과 입고 있는 옷의 특징을 동시에 분석을 시작하여 겹쳐지는 경우의 인물들만 추출하여 관계자에게 확인이 가능하도록 한다. 향후 실종자의 특징들을 좁혀 정확도를 높이기 위해 더 다양한 특징 검출 학습을 목표로 한다.
Gloria Sanin;Gabriel Cambronero;Megan E. Lundy;William T. Terzian;Martin D. Avery;Samuel P. Carmichael II;Maggie Bosley
Journal of Trauma and Injury
/
제36권4호
/
pp.421-424
/
2023
This case report presents the case of a 49-year-old man who presented to our level I trauma center after sustaining injuries in an altercation with local law enforcement in which he was shot with a less lethal bean bag and tased. In a primary survey, a penetrating left supraclavicular wound was noted in addition to a taser dart lodged in his flank. No other traumatic findings were noted in a secondary survey. Given hemodynamic stability, completion imaging was obtained, revealing a foreign body in the left lung, a left open clavicle fracture, a C5 tubercle fracture, a possible grade I left vertebral injury, and a left first rib fracture. Soft tissue gas was seen around the left subclavian and axillary arteries, although no definitive arterial injury was identified. The bean bag projectile was embedded in the parenchyma of the left lung on cross-sectional imaging. The patient underwent thoracotomy for removal of the projectile and hemostasis. A thoracotomy was chosen as the operative approach due to concerns about significant bleeding upon foreign body removal. A chest tube was placed and subsequently removed on postoperative day 5. The patient was discharged on postoperative day 7. At a 2-week outpatient follow-up visit, the patient was doing well. This case report is the first to describe this outcome for a drag-stabilized bean bag. Although law enforcement officers utilize bean bag projectiles as a "less lethal" means of crowd control and protection, these ballistics pose significant risk and can result in serious injury.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.