• Title/Summary/Keyword: crosswind response

Search Result 11, Processing Time 0.034 seconds

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

POD analysis of crosswind forces on a tall building with square and H-shaped cross sections

  • Cheng, L.;Lam, K.M.;Wong, S.Y.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.63-84
    • /
    • 2015
  • The shape of a tall building has significant impact on wind force generation and wind-induced dynamic response. To study the effect of recessed cavities, wind excitations on a wind-tunnel model of an H-section tall building were compared with those on a square-section building model. Characteristics of the fluctuating wind pressures on the side faces of the two tall buildings and their role in the generation of crosswind forces on the buildings were investigated with the space-time statistical tool of proper orthogonal decomposition (POD). This paper also compares the use of different pressure data sets for POD analysis in situations where pressures on two different surfaces are responsible for the generation of a wind force. The first POD mode is found to dominate the generation of crosswind excitation on the buildings.

Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms

  • Chen, Zhengwei;Liu, Tanghong;Li, Ming;Yu, Miao;Lu, Zhaijun;Liu, Dongrun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.149-161
    • /
    • 2019
  • When a railway vehicle runs in crosswinds, the unsteady aerodynamic forces acting on the train induced by the vehicle speed, crosswind velocity and local landforms are a common problem. To investigate the dynamic performance of a railway vehicle due to the influence of unsteady aerodynamic forces caused by local landforms, a vehicle aerodynamic model and vehicle dynamic model were established. Then, a wind-loaded vehicle system model was presented and validated. Based on the wind-loaded vehicle system model, the dynamic response performance of the vehicle, including safety indexes and vibration characteristics, was examined in detail. Finally, the effects of the crosswind velocity and vehicle speed on the dynamic response performance of the vehicle system were analyzed and compared.

A Study on Aerodynamic Damping and Aeroelastic Instability of Helical-shaped Super Tall Building (나선형 초고층건물의 공력불안정 진동과 공력감쇠에 관한 연구)

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio;Yi, Jin-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.95-103
    • /
    • 2016
  • In this paper, aeroelastic instability and aerodynamic damping ratio of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and crosswind responses on a super tall building was investigated by an aeroelastic model test, and the aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement Technique. Aerodynamic damping ratios evaluated in this study were verified through comparison with previous results obtained by quasi-steady theory. As a result, the aeroelastic instability of the helical $180^{\circ}$ model in crosswind direction were not occurred for any conditions with increasing the reduced wind velocity while the square model generally encounters aeroinstability due to the vortex shedding. The aerodynamic damping in along-wind direction for the helical $180^{\circ}$ and the square model increased monotonically both with reduced wind velocity, i.e., there is no relation with modifications of building shapes. On the other hand, in crosswind direction, the characteristics of aerodynamic damping ratio with reduced wind velocity for helical $180^{\circ}$ model were quit different from those of the square model.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Aspects of the dynamic wind-induced response of structures and codification

  • Tamura, Yukio;Kareem, Ahsan;Solari, Giovanni;Kwok, Kenny C.S.;Holmes, John D.;Melbourne, William H.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.251-268
    • /
    • 2005
  • This paper describes the work of the International Association for Wind Engineering Working Group E -Dynamic Response, one of the International Codification Working Groups set up at the Tenth International Conference on Wind Engineering in Copenhagen. Comparisons of gust loading factors and wind-induced responses of major codes and standards are first reviewed, and recent new proposals on 3-D gust loading factor techniques are introduced. Then, the combined effects of along-wind, crosswind and torsional wind load components are discussed, as well as the dynamic characteristics of buildings. Finally, the mathematical forms of along-wind velocity spectra for along-wind response calculation and codification of acceleration criteria are discussed.

Aerodynamic and Flow Characteristics of Tall Buildings with Various Unconventional Configurations

  • Tanaka, Hideyuki;Tamura, Yukio;Ohtake, Kazuo;Nakai, Masayoshi;Kim, Yong Chul;Bandi, Eswara Kumar
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.213-228
    • /
    • 2013
  • Tall buildings have been traditionally designed to be symmetric rectangular, triangular or circular in plan, in order to avoid excessive seismic-induced torsional vibrations due to eccentricity, especially in seismic-prone regions like Japan. However, recent tall building design has been released from the spell of compulsory symmetric shape design, and free-style design is increasing. This is mainly due to architects' and structural designers' challenging demands for novel and unconventional expressions. Another important aspect is that rather complicated sectional shapes are basically good with regard to aerodynamic properties for crosswind excitations, which are a key issue in tall-building wind-resistant design. A series of wind tunnel experiments and numerical simulation have been carried out to determine aerodynamic forces and wind pressures acting on tall building models with various configurations: corner cut, setbacks, helical and so on. Dynamic wind-induced response analyses of these models have also been conducted. The results of these experiments have led to comprehensive understanding of the aerodynamic characteristics of tall buildings with various configurations.

3-D wind-induced effects on bridges during balanced cantilever erection stages

  • Schmidt, Stefan;Solari, Giovanni
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.1-22
    • /
    • 2003
  • Nowadays balanced cantilever construction plays an essential role as a sophisticated erection technique of bridges due to its economical and ecological advantages. Experience teaches that wind has a great importance with regard to this construction technique, but methods proposed by codes to take wind effects into account are still rather crude and, in most cases, completely lacking. Also research in this field is quite limited and aimed at studying only the longitudinal shear and the torque at the pier base, caused by the mean wind velocity and by the longitudinal turbulence actions over the deck. This paper advances the present solutions by developing a new procedure that takes into account all wind effects both on the deck and on the pier. The proposed model assumes the mean wind velocity as orthogonal to the bridge plane and considers the effects produced by all the three turbulence components and by the vortex shedding. The applications point out the role of each loading component on different bridge configurations and show that disregarding the presence of some effects may imply oversimplified results and relevant underestimations.