• Title/Summary/Keyword: crossover design

Search Result 313, Processing Time 0.028 seconds

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

The Effects of Various Bag-Carrying Styles on the Muscle Tone and Stiffness and the Spinal Alignment of Adults with Rounded Shoulder Posture during Treadmill Walking

  • Jeon, Changkeun;Yoo, Kyungtae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.3
    • /
    • pp.1840-1848
    • /
    • 2019
  • Background : There is lack of studies on the effects of the bag-carrying style on the shoulder muscles and body alignment in adults with rounded shoulder posture (RSP). Objective: The purpose of this study was to investigate the effects of various bag-carrying styles on muscle tone, muscle stiffness and spinal alignment in 20 adults with RSP as they were walking on a treadmill. Design : Crossover Study Design. Methods: A subject performed treadmill walking for 15 minutes at a speed of 4 ㎞/h while carrying three different types of bags: a backpack, a cross bag, and a shoulder bag. Results : The results showed that the main effect of timing was observed in the muscle tone for all the variables and in muscle stiffness only for the upper and lower trapezius muscles. As for the main effect of timing, the muscle tone of the upper trapezius and the pectoralis major significantly increased in all conditions, while the muscle tone of the lower trapezius significantly decreased in all conditions. The muscle stiffness of the upper trapezius significantly increased in all conditions, while the muscle stiffness of the lower trapezius significantly decreased in all conditions. As for the spinal alignment, the dimple distance data values significantly decreased for the cross-bag style. Conclusions : This study demonstrated that walking with a heavy bag, regardless of the bag-carrying style, increased muscle stiffness around the shoulders in adults with rounded shoulder posture, and walking with a cross-bag also induced changes in spinal alignment.

A Study on the Narratives of Single Person Experience based on Visual Transference: Focusing on the Isolated Factors of COVID-19 (시각적 전이에 기초한 1인 경험 내러티브에 관한 연구: COVID-19의 고립 요인을 중심으로)

  • Lee, You-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2022
  • The purpose of the study was to further investigate the direction for one-person experience design based on visual shift due to the isolation one has experienced after the COVID-19 and the factors regarding it. The study involves eight female participants who are in their twenties via digital platform. The participants were instructed to choose digital image similar to COVID-19 and to write down facts based upon the image and the researcher will look into the result microscopically. The researchers found that the isolation factors include decreased face-to-face communication, reliance on social media, heavy usage of OTT platform, limited outdoor occasion and activity, limitation of untact technology and education program, fear over the pandemic and so on. The study has shown that the one-person experience design should be heading in a direction where it adopts space design that can crossover online and offline world, digital complex design to embody realness as well as the communication design to regain the relationships with others.

Effects of Organic Feed Containing Rice Bran and Soybean Hull on Milk Production of Mid-Lactation Dairy Goats (미강과 대두피가 첨가된 유기사료의 공급이 비유중기 유산양의 유생산성에 미치는 영향)

  • Park, Joong-Kook;Kim, Chang-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.4
    • /
    • pp.599-612
    • /
    • 2010
  • This study was conducted to investigate the effect of organic feed containing rice bran and soybean hull as organic by-products on milk production of mid-lactation dairy goats. Four Saanen dairy goats (initial BW $59.4{\pm}7.4$ kg, average 6 lactation months, fourth kidding) were allocated into conventional feed group (T1) and organic feed group (T2) with 2${\times}$3 crossover design for 9 weeks. Experimental diets were formulated to contain 23 MJ ME/d, 382 g CP/d DM based on NRC (1981) and AFRC (1998). Dry matter (DM) intakes of concentrate and silage were higher in T2 (1,232 and 96 g/d) than T1 (1,105 and 91 g/d) (p<0.05). However, DM intake of hay was higher in T1 (488 g) than T2 (347 g) (p<0.05). Total DM intake had no significant difference between T1 and T2. Although no significant difference was found in milk yield between treatments, T2 numerically increased (+150 g/d) compared with T1. There were no significant differences in milk composition and milk urea nitrogen (MUN) between T1 and T2. Relative to T1, T2 significantly increased the stearic acid (C18:0) and linoleic acid (C18:2) (p<0.05). Overall results of the present experiment indicated that organic feed could not adversely affect DM intake and milk production in dairy goats compared with conventional feed.

A Comparative Study of Genetic Algorithm and Mathematical Programming Technique applied in Design Optimization of Geodesic Dome (지오데식 돔의 설계최적화에서 유전알고리즘과 수학적계획법의 비교연구)

  • Lee, Sang-Jin;Lee, Hyeon-Jin
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.101-106
    • /
    • 2008
  • This paper describes a comparative study of genetic algorithm and mathematical programming technique applied in the design optimization of geodesic dome. In particular, the genetic algorithm adopted in this study uses the so-called re-birthing technique together with the standard GA operations such as fitness, selection, crossover and mutation to accelerate the searching process. The finite difference method is used to calculate the design sensitivity required in mathematical programming techniques and three different techniques such as sequential linear programming (SLP), sequential quadratic programming(SQP) and modified feasible direction method(MFDM) are consistently used in the design optimization of geodesic dome. The optimum member sizes of geodesic dome against several external loads is evaluated by the codes $ISADO-GA{\alpha}$ and ISADO-OPT. From a numerical example, we found that both optimization techniques such as GA and mathematical programming technique are very effective to calculate the optimum member sizes of three dimensional discrete structures and it can provide a very useful information on the existing structural system and it also has a great potential to produce new structural system for large spatial structures.

  • PDF

A Study on the Phased Cultural Product Design with Characteristics of Unlined Cheollik in Early 17th Century and Baby Typed Doll's Body (17세기 초 홑철릭 유물의 시대특성과 유아형 인형의 체형특성을 응용한 단계별 복식문화상품 디자인 연구)

  • Choi, Jeong
    • Fashion & Textile Research Journal
    • /
    • v.19 no.4
    • /
    • pp.385-399
    • /
    • 2017
  • This study will broaden the application of doll costume product with historical characteristics and the image of unlined cheollik in the $17^{th}$ century period of transition during the Joseon Dynasty. Historical design sources were extracted from old documents and precedent studies. Unlined cheollik of Shin Gyeong-yu, meritorious retainer, were selected as main reference-relic because of various fabric, preserved conditions and definite shape. 'Baby doll' was selected as main model because of consumer preferences and awareness. Design sources from unlined cheollik in the early $17^{th}$ century were about a 1:2 ratio of upper and under parts, removable separated doori-somae, knife-shaped collar (outside), projected square collar (inside), long pleats line, side slit, traditional flat fell seam sewing. Trapezoidal side line, round waistline, and thin fabric were applied in designs because of toddler-body of doll model. Three designs were produced in step 1: Cheollik A focusing on the historical remake (traditional type), Cheollik B with belt and side slit (crossover type), and Cheollik C with back- opening (modern type). In step 2, interview with fashion major student was conducted to increase the utility of designs. As a result, modern trend sources (frill, velcro, round armhole line, slope of sleeves, and floral pattern) were reflected in Cheollik B, C. Finally, three doll cheollik and cheollik-styled doll apron sample were produced. Various versions must be suggested in the study of doll costume products with traditional sources that balance historical characteristics and practicality to improve customer satisfaction.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.

A Study on the Design Development of Lady′s Down Wear

  • Lee, Soon-Ja;Choy, Hyon-Sook
    • International Journal of Costume and Fashion
    • /
    • v.4
    • /
    • pp.21-45
    • /
    • 2004
  • The rapid development of science technology during the 20th century has greatly lowered the hours for labour, thus giving members of society extra time for leisure. With the increasement of leisure activities, sports casual wear has become one of the foremost leading items in the fashion industry, and among such sports casual, down wear has become the F/W season's most popular item. Because it generates high profits, many recognize it as a very important factor in lady's wear. Since the 1990's, down wear was widely applied to various sections of lady's, men's, and children's wear, and it has ceased to be limited to sports casual only. The purpose of this study was to fully understand the characteristics of down, and to develop crossover garments design desired not only in the F/W season but also the S/S season. It has been taken into consideration that many restrictions in sewing technique and material selection in manufacturing down as a fashion product exist when choosing a means of manufacture. That was why this study focused on the history and characteristics of down while analysing the works of domestic and foreign designers to concretely applicate them in fashion products. This study has divided the resulting down wear products according to consumer preference: vest, jacket, coat, one-piece, and skirt to applicate design manufacture of lady's wear in general, while designing and making artistically expressed down wear. There were 48 works developed as a result of this study, of which 41 were ready-to-wear, and the remaining 7 works were creative art wear.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF