MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.
Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.
Background: Injury is one of the major health problems in South Korea. Few studies have evaluated both intentional and unintentional injury when investigating the association between exposure to air pollutants and injury. Objectives: We aimed to explore the association between short-term exposure to ambient air pollution and years of life lost (YLLs) due to injury. Methods: Data on daily YLLs for 2002~2019 were obtained from the the Death Statistics Database of the Korean National Statistical Office. This study estimated short-term exposure to particulate matter with an aerodynamic diameter of <10 ㎛ (PM10), particulate matter with an aerodynamic diameter of <2.5 ㎛ (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). This time series study was conducted using a generalized additive model (GAM) assuming a Gaussian distribution. We also evaluated a delayed effect of ambient air pollution by constructing a lag structure up to seven days. The best-fitting lag was selected based on smallest generalized cross validation (GCV) value. To explore effect modification by intentionality of injury (i.e., intentional injury [self-harm, assault] and unintentional injury), we conducted stratified subgroup analyses. Additionally, we stratified unintentional injury by mechanism (traffic accident, fall, etc.). Results: During the study period, the average daily YLLs due to injury was 307.5 years. In the intentional injury, YLLs due to self-harm and assault showed positive association with air pollutants. In the unintentional injury, YLLs due to fall, electric current, fire and poisoning showed positive association with air pollutants, whereas YLLs due to traffic accident, mechanical force and drowning/submersion showed negative associations with air pollutants. Conclusions: Injury is recognized as preventable, and effective strategies to create a safe society are important. Therefore, we need to establish strategies to prevent injury and consider air pollutants in this regard.
Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
Journal of Dairy Science and Biotechnology
/
제41권3호
/
pp.113-125
/
2023
In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.
2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.
Ayman Abu Ghazal;Rawand Alakash;Zainab Aljumaili;Ahmed El-Sayed;Hamza Abdel-Rahman
Journal of Radiation Protection and Research
/
제48권4호
/
pp.184-196
/
2023
Background: Radiation protection is crucial in various fields due to the harmful effects of radiation. Shielding is used to reduce radiation exposure, but gamma radiation poses challenges due to its high energy and penetration capabilities. Materials and Methods: This work investigates the radiation shielding properties of polyvinylidene fluoride (PVDF) samples containing different weight fraction of tungsten carbide (WC), tungsten trioxide (WO3), and tungsten disulfide (WS2). Parameters such as the mass attenuation coefficient (MAC), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and macroscopic effective removal cross-section for fast neutrons (ΣR) were calculated using the Phy-X/PSD software. EpiXS simulations were conducted for MAC validation. Results and Discussion: Increasing the weight fraction of the additives resulted in higher MAC values, indicating improved radiation shielding. PVDF-xWC showed the highest percentage increase in MAC values. MFP results indicated that PVDF-0.20WC has the lowest values, suggesting superior shielding properties compared to PVDF-0.20WO3 and PVDF-0.20WS2. PVDF-0.20WC also exhibited the highest Zeff values, while PVDF-0.20WS2 showed a slightly higher increase in Zeff at energies of 0.662 and 1.333 MeV. PVDF-0.20WC has demonstrated the highest ΣR value, indicating effective shielding against fast neutrons, while PVDF-0.20WS2 had the lowest ΣR value. The Monte Carlo N-Particle Transport version 5 (MCNP5) simulations showed that PVDF-xWC attenuates gamma radiation more than pure PVDF, significantly decreasing the dose equivalent rate. Conclusion: Overall, this research provides insights into the radiation shielding properties of PVDF mixtures, with PVDF-xWC showing the most promising results.
당뇨병과 같은 만성 질환의 조기 예측은 중요한 이슈이며, 그중에서도 당뇨 예측의 정확도 향상은 매우 중요하다. 당뇨 예측을 위한 다양한 기계 학습 및 딥 러닝 기반 방법론을 도입하고 있으나, 이러한 기술들은 다른 방법론보다 더 우수한 성능을 위해 대량의 데이터를 필요로 하며, 복잡한 데이터 모델 때문에 학습 비용이 높다. 본 연구에서는 pima 데이터셋과 k-fold 교차 검증을 사용한 DNN이 당뇨 진단 모델의 효율성을 감소시킨다는 주장을 검증하고자 한다. 의사 결정 트리, SVM, 랜덤 포레스트, 로지스틱 회귀, KNN 및 다양한 앙상블 기법과 같은 기계 학습 분류 방법을 사용하여 어떤 알고리즘이 최상의 예측 결과를 내는지 결정하였다. 모든 분류 모델에 대한 훈련 및 테스트 후 제안된 시스템은 ADASYN 방법과 함께 XGBoost 분류기에서 최상의 결과를 제공하였으며, 정확도는 81%, F1 계수는 0.81, AUC는 0.84였다. 또한 도메인 적응 방법이 제안된 시스템의 다양성을 보여주기 위해 구현되었다. LIME 및 SHAP 프레임워크를 사용한 설명 가능한 AI 접근 방식이 모델이 최종 결과를 어떻게 예측하는지 이해하기 위해 구현되었다.
본 연구에서는 지도학습 기반 분할기법을 이용하여 단층 촬영된 단방향 복합재료의 유한요소모델링을 실시하였다. 우선, 단방향 복합재료의 형상 정보를 얻기 위해 Micro-CT 스캔을 수행하여 단방향 복합재료의 순수 체적(raw volume)을 획득하였고 여기에 몇 개의 단면을 선택하여 재료의 마이크로 구조인 섬유의 형상을 라벨링하였다. 이후 재료의 단면 이미지와 라벨링한 이미지를 각각 입출력으로 U-net 모델을 훈련시켰다. 이를 사용하여 선택되지 않은 단층촬영 이미지를 섬유형상을 구분하는 분할을 수행하였고 이렇게 생성된 3차원 정보를 이용해서 유한요소모델을 생성하였다. 최종적으로 단방향 복합재료 시편과 유한요소모델의 섬유체적비를 비교하여 제안된 방법의 적절성을 확인하였다.
Na Young Kim;Dae Chul Jung;Jung Yun Lee;Kyung Hwa Han;Young Taik Oh
Korean Journal of Radiology
/
제22권9호
/
pp.1481-1489
/
2021
Objective: To construct a CT-based Fagotti scoring system by analyzing the correlations between laparoscopic findings and CT features in patients with advanced ovarian cancer. Materials and Methods: This retrospective cohort study included patients diagnosed with stage III/IV ovarian cancer who underwent diagnostic laparoscopy and debulking surgery between January 2010 and June 2018. Two radiologists independently reviewed preoperative CT scans and assessed ten CT features known as predictors of suboptimal cytoreduction. Correlation analysis between ten CT features and seven laparoscopic parameters based on the Fagotti scoring system was performed using Spearman's correlation. Variable selection and model construction were performed by logistic regression with the least absolute shrinkage and selection operator method using a predictive index value (PIV) ≥ 8 as an indicator of suboptimal cytoreduction. The final CT-based scoring system was internally validated using 5-fold cross-validation. Results: A total of 157 patients (median age, 56 years; range, 27-79 years) were evaluated. Among 120 (76.4%) patients with a PIV ≥ 8, 105 patients received neoadjuvant chemotherapy followed by interval debulking surgery, and the optimal cytoreduction rate was 90.5% (95 of 105). Among 37 (23.6%) patients with PIV < 8, 29 patients underwent primary debulking surgery, and the optimal cytoreduction rate was 93.1% (27 of 29). CT features showing significant correlations with PIV ≥ 8 were mesenteric involvement, gastro-transverse mesocolon-splenic space involvement, diaphragmatic involvement, and para-aortic lymphadenopathy. The area under the receiver operating curve of the final model for prediction of PIV ≥ 8 was 0.72 (95% confidence interval: 0.62-0.82). Conclusion: Central tumor burden and upper abdominal spread features on preoperative CT were identified as distinct predictive factors for high PIV on diagnostic laparoscopy. The CT-based PIV prediction model might be useful for patient stratification before cytoreduction surgery for advanced ovarian cancer.
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.125-134
/
2024
The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.