• 제목/요약/키워드: cross-tier interference

검색결과 26건 처리시간 0.03초

Femtocell Networks Interference Management Approaches

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.329-339
    • /
    • 2022
  • Small cells, particularly femtocells, are regarded a promising solution for limited resources required to handle the increasing data demand. They usually boost wireless network capacity. While widespread usage of femtocells increases network gain, it also raises several challenges. Interference is one of such concerns. Interference management is also seen as a main obstacle in the adoption of two-tier networks. For example, placing femtocells in a traditional macrocell's geographic area. Interference comes in two forms: cross-tier and co-tier. There have been previous studies conducted on the topic of interference management. This study investigates the principle of categorization of interference management systems. Many methods exist in the literature to reduce or eliminate the impacts of co-tier, cross-tier, or a combination of the two forms of interference. Following are some of the ways provided to manage interference: FFR, Cognitive Femtocell and Cooperative Resource Scheduling, Beamforming Strategy, Transmission Power Control, and Clustering/Graph-Based. Approaches, which were proposed to solve the interference problem, had been presented for each category in this work.

이종 셀룰러 망에서 계층 간 간섭완화를 위한 인지 빔형성 기법 (A Cognitive Beamforming Scheme for Cross-Tier Interference Mitigation in Heterogeneous Cellular Networks)

  • 서주열;박승영
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1387-1401
    • /
    • 2016
  • 기존의 이종 셀룰러 망 환경에 허가된 사용자만이 기지국에 접속되는 closed access 정책이 적용되면, 매크로셀 사용자는 주변의 접속이 허용되지 않는 소형셀 기지국으로 인한 cross-tier 간섭 문제를 겪게 된다. 이 문제를 완화하기 위해 해당 소형셀 기지국이 매크로셀 사용자의 채널에 직교하는 빔형성 벡터를 사용하여 자신에게 속한 사용자에게 데이터를 전송하는 기법이 제안되었다. 이 기법을 적용하기 위해서는 매크로셀 기지국, 매크로셀 사용자, 소형셀 기지국 간의 상호 정보교환이 필요하므로 이로 인해 시스템의 복잡도가 증가하게 된다. 본 논문에서는 상호 정보교환 없이 소형셀 기지국이 스스로 환경을 인지하여 co-tier 간섭전력뿐만 아니라 cross-tier 간섭전력을 동시에 줄일 수 있는 인지 빔형성 기법을 제안한다. 구체적으로 소형셀 기지국이 cross-tier 간섭문제를 겪는 사용자를 파악한 후, 해당 사용자의 채널과 주변 소형셀 사용자 채널에 동시에 직교하는 빔형성 벡터를 생성하여 데이터 전송에 사용하여 cross-tier 간섭과 co-tier 간섭을 동시에 줄인다. 제안 기법의 유효성을 검증하기 위해 시스템 레벨 시뮬레이션을 수행하였고, 해당 결과를 통해 제안된 기법이 cross-tier 간섭을 효과적으로 줄일 수 있음을 확인하였다.

Spectrum Reuse with Power Control for Two-Tier Femtocell Networks

  • Kim, Youngju;Wang, Hano;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.275-284
    • /
    • 2014
  • This paper considers two-tier networks consisting of macrocells and femtocells operating in the same spectrum. This paper proposes a femtocell spectrum reuse scheme that determines the shared spectrum and transmit power for the femtocells to mitigate the effects of cross-tier interference between the macrocells and femtocells. The proposed scheme provides macrocell throughput that is unaffected by the increasing number of femtocells per cell site and improves the femtocell signal quality at the same time by limiting the cross-tier interference. This study analyzed the per-tier signal-to-interference ratio (SIR) and outage probability of the proposed scheme to investigate the macrocell and femtocell performance. The total throughput of the proposed scheme was analyzed based on the outage probabilities. The analysis and numerical results proved that high femtocell throughput can be achieved using only a small fraction of the spectrum while protecting the macrocell throughput. As a result, an improved total throughput was achieved enforcing higher spatial reuse.

Femtocell Subband Selection Method for Managing Cross- and Co-tier Interference in a Femtocell Overlaid Cellular Network

  • Kwon, Young Min;Choo, Hyunseung;Lee, Tae-Jin;Chung, Min Young;Kim, Mihui
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.384-394
    • /
    • 2014
  • The femtocell overlaid cellular network (FOCN) has been used to enhance the capacity of existing cellular systems. To obtain the desired system performance, both cross-tier interference and co-tier interference in an FOCN need to be managed. This paper proposes an interference management scheme that adaptively constructs a femtocell cluster, which is a group of femtocell base stations that share the same frequency band. The performance evaluation shows that the proposed scheme can enhance the performance of the macrocell-tier and maintain a greater signal to interference-plus-noise ratio than the outage level can for about 99% of femtocell users.

Interference Alignment Based Transceiver Design in OSG mode of HetNets

  • Niu, Qin;Zeng, Zhimin;Zhang, Tiankui;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.2014-2034
    • /
    • 2015
  • This paper focuses on solving co-channel interference (CCI) issues arising in the open subscriber group (OSG) mode of heterogeneous networks (HetNets). Considering a general framework consisting of arbitrary number of picocells within a macro cell, where the inter-user interference (IUI) is the main CCI to macro user equipments (UEs), while the the inter-cell interference (ICI) is the major CCI to pico UEs. In this paper, three IA based transceiver design schemes are proposed. For macro cell, we uniformly use block diagonalization (BD) scheme to eliminate the IUI. And for picocells, three IA schemes are proposed to mitigate the ICI. The first scheme, named as zero forcing IA (ZF-IA) scheme, aligns the inter picocell interference onto an arbitrary sub-space of the cross-tier interference using ZF scheme. Considering the channel state information (CSI) of the desired channel of pico UEs, the second scheme, named as optimal desired sub-channel selected IA (ODC-IA) scheme, aligns the inter picocell interference onto a certain sub-space of the cross-tier interference, which guarantees the largest channel gain of the desired signal of pico UEs. The third IA scheme, named as maximum cross-tier interference selected IA (MI-IA) scheme, is designed for the system with less receive antennas. The inter picocell interference is aligned onto the space of the strongest cross-tier interference and only the interference on this space is nullified. The complexity analysis and simulations show that the proposed transceiver design schemes outperform the existing IA schemes in the OSG mode of HetNets, and the MI-IA scheme reduces the requirement of the receive antennas number with lower complexity.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Distributed Resource Allocation in Two-Hierarchy Networks

  • Liu, Shuhui;Chang, Yongyu;Wang, Guangde;Yang, Dacheng
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.159-167
    • /
    • 2012
  • In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross-tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non-cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two-hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross-tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.

Two-Tier Interference Elimination for Femtocells Based on Cognitive Radio Centralized Spectrum Management

  • Yi, Leng-Gan;Lu, Yi-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1514-1531
    • /
    • 2014
  • Femtocell provides better coverage and higher spectrum efficiency in areas rarely covered by macrocells. However, serious two-tier interference emerging from randomly deploying femtocells may create dead zones where the service is unavailable for macro-users. In this paper, we present adopting cognitive radio spectrum overlay to avoid intra-tier interference and incorporating spectrum underlay and overlay to coordinate cross-tier interference. It is a novel centralized control strategy appropriate for both uplink and downlink transmission. We introduce the application of proper spectrum sharing strategy plus optimal power allocation to address the issue of OFDM-based femtocells interference-limited downlink transmission, along with, a low-complexity suboptimal solution proposed. Simulation results illustrate the proposed optimal scheme achieves the highest transmission rate on successfully avoiding two-tier interference, and outperforms the traditional spectrum underlay or spectrum overlay, via maximizing the opportunity to transmit. Moreover, the strength of our proposed schemes is further demonstrated by comparison with previous classic power allocation methods, in terms of transmission rate, computational complexity and signal peak-to-average power ratio.

Clustering Based Adaptive Power Control for Interference Mitigation in Two-Tier Femtocell Networks

  • Wang, Hong;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1424-1441
    • /
    • 2014
  • Two-tier femtocell networks, consisting of a conventional cellular network underlaid with femtocell hotspots, play an important role in the indoor coverage and capacity of cellular networks. However, the cross- and co-tier interference will cause an unacceptable quality of service (QoS) for users with universal frequency reuse. In this paper, we propose a novel downlink interference mitigation strategy for spectrum-shared two-tier femtocell networks. The proposed solution is composed of three parts. The first is femtocells clustering, which maximizes the distance between femtocells using the same slot resource to mitigate co-tier interference. The second is to assign macrocell users (MUEs) to clusters by max-min criterion, by which each MUE can avoid using the same resource as the nearest femtocell. The third is a novel adaptive power control scheme with femtocells downlink transmit power adjusted adaptively based on the signal to interference plus noise ratio (SINR) level of neighboring users. Simulation results show that the proposed scheme can effectively increase the successful transmission ratio and ergodic capacity of femtocells, while guaranteeing QoS of the macrocell.

QoS Priority Based Femtocell User Power Control for Interference Mitigation in 3GPP LTE-A HetNet

  • Ahmad, Ishtiaq;Kaleem, Zeeshan;Chang, KyungHi
    • 한국통신학회논문지
    • /
    • 제39B권2호
    • /
    • pp.61-74
    • /
    • 2014
  • In recent years, development of femtocells are receiving considerable attention towards increasing the network coverage, capacity, and improvement in the quality of service for users. In 3GPP LTE-Advanced (LTE-A) system, to efficiently utilize the bandwidth, femtocell and macro cell uses the same frequency band, but this deployment poses a technical challenge of cross-tier interference to macro users. In this paper, the novel quality of service based fractional power control (QoS-FPC) scheme under the heterogeneous networks environment is proposed, which considers the users priority and QoS-requirements during the power allocation. The proposed QoS-FPC scheme has two focal points: firs, it protects the macrocell users uplink communication by limiting the cross-tier interference at eNB below a given threshold, and second, it ensures the optimization of femtocell users power allocation at each power adjustment phase. Performance gain is demonstrated with extensive system-level simulations to show that the proposed QoS-FPC scheme significantly decreases the cross-tier intereference and improves the overall users throughput.