• Title/Summary/Keyword: cross-sectional ratio

Search Result 808, Processing Time 0.026 seconds

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Cross-sectional Study of Obesity Indices in Stroke (초발 뇌경색 환자의 비만지표에 관한 단면적 연구)

  • Kim, Jin-Ah;Park, Jung-Mi;Kim, Hyung-Do
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • Objective: Obesity is an established risk factor for Coronary Heart Disease, but its role as risk factor for Stroke remains controversial. And we examined association between Obesity indices and Stroke cross sectionally. Methods: The subjects were 30 stroke patients admitted in hospital. We measured obesity indices of BMI, waist circumference and waist-to-height ratio. Result: There was a significant correlation among BMI, waist circumference and waist-to-height ratio. 47% of subjects were obese in BMI and 93% of subjects were obese in waist-to-height ratio. Conclusion: Abdominal obesity measured by waist circumference and waist-to-height ratio may be a better predictor of stroke than BMI.

  • PDF

The Correlation between Ultrasonographic Findings of Median Nerve and Clinical Scale and Electrodiagnotic Data in Carpal Tunnel Syndrome (수근관 증후군에서 임상양상척도 및 신경전기진단 결과와 정중신경 초음파 소견의 상관관계)

  • Lee, Gyu-Ho;Kim, Sei-Joo;Yoon, Joon-Shik;Park, Byung-Kyu;Cho, Jung-Mo;Jung, Jin-Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Background: The aim of this study is to identify the correlation between ultrasonographic findings of median nerve and clinical scale and electrophysiologic data in carpal tunnel syndrome. Methods: Forty three patients (79 hands) with electrophysiologically confirmed carpal tunnel syndrome were evaluated. Clinical symptoms were examined by Historical-Objective (Hi-Ob) scale. Electrophysiologic data and Padua scale were used for severity of electrophysiology. In ultrasonographic study, cross sectional area and flattening ratio of median nerve were measured at distal wrist crease level (DWC), 1cm proximal to distal wrist crease level, and 1cm distal to distal wrist crease level. The correlation between Hi-Ob scale, electrophysiologic data and ultrasonography was measured with Spearman rank test. Results: The mean Hi-Ob scale was 2.4. Mean Padua scale was 4.0. In ultrasnonographic study, cross sectional area and flattening ratio were $0.112\;cm^2{\pm}0.025$ and $3.0{\pm}0.6$ at 1cm proximal to DWC level, $0.118{\pm}0.026\;cm^2$ and $2.9{\pm}0.4$ at DWC level, and $0.107{\pm}0.032\;cm^2$ and $3.0{\pm}0.4$ at 1 cm distal to DWC level. Hi-Ob scale was not correlated with cross sectional area and flattening ratio of median nerve. Hi-Ob scale was correlated with Padua scale positively (r=0.44) and correlated with amplitudes of CMAP and SNAP, negatively (r=-0.33; r=-0.30). Cross sectional area of median nerve was significantly correlated with Padua scale, amplitudes and latencies of CMAP and amplitudes of SNAP. Conclusions: Ultrasonographic findings of median nerve and electrodiagnostic data had statistically significant correlation. Consequently, ultrasonography could be an adjunctive method in diagnosis of carpal tunnel syndrome.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

A New Experimental Method of Mechanical Analysis for Arterial Cross-Section Research (동맥 전단부의 역학적분석을 위한 새로운 실험적 방법)

  • 황민철;신정욱
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.149-156
    • /
    • 1995
  • This paper suggests a new experimental system and protocol of mechanical analysis for arterial cross-section research. So far, most methods of arterial studies have been focused on the deformation measurement in longitudinal and circumferential direction. The deformation in radial direction has been theoretically assumed by Poisson's ratio and/or the incompressibility of arterial wall. Also, the radial gradient of strains are neglected. In fact, the radial deformation and radial gradient of strains against blood pressure are important to be observed in the pathological point of view of artery. Proposed experimental system and protocol are to measure the deformation of cross-sectional artery. Also, this method enables to measure the deformation of anterior, posterior, and side site of cross-sectional area. It is meaningful to correlate the mechanically experimented data with pathological data of athroscIerotic artery.

  • PDF

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

A Study on the Fluid Flow by Change of Pressure & Flow in the Collapsible Tube (압출관에서의 압력 및 유형변화에 따른 유체유동에 관한 연구)

  • Kim, Jong-Eok;Lee, Han-Yeong;Hong, Gi-Bae
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 1984
  • In order to research the flow in the thin wall compliant tube, this present study is attempt to measure the cross sectional area according to change of external pressure and flow by ultrasonic method different from willy used impedance technique for flow analysis about one dimensional Steads flow. The experimental results are as follows. 1) Measurement of cross sectional area ratio by ultrasonic method by comparison with experimental results of impedance technique & theoretical results were well consent. 2) Pressure difference of upstream and down stream is alwap's maximum range at 0.4 < $\alpha$ <0.5, and have no connection with changing external pressure. 3) when the external pressure is fixed and resistance is varied, Self excited oscillation occurs in the region at 0.5 < $\alpha$ <0.6, and oscillation disappear almost at R2>=1.2

  • PDF

Factors associated with healthcare utilization for infant falls in South Korea: a cross-sectional online survey

  • Soo-Yeon Han;Cho Hee Kim
    • Child Health Nursing Research
    • /
    • v.29 no.4
    • /
    • pp.252-259
    • /
    • 2023
  • Purpose: Falls are a common cause of unintentional injuries in infants. This study was conducted to examine the patterns of healthcare utilization following infant falls in South Korea. Methods: This cross-sectional descriptive study utilized an online survey designed to gather information regarding the general characteristics of parents and infants, fall-related variables, and healthcare use. Results: The most serious falls identified by parents occurred at an average infant age of 6.97 months. Most fall incidents took place indoors (95.7%), and many occurred under the supervision of caregivers (68.0%). Following the fall, 36.4% of the participants used healthcare services. Logistic regression analysis revealed that healthcare use following an infant fall was significantly associated with being a firstborn child (odds ratio [OR]=5.32, 95% confidence interval [CI], 2.19-15.28) and falling from a caregiver's arms (OR=4.22; 95% CI, 1.45-13.68). Conclusion: To prevent and decrease the frequency of infant falls, improvements are needed in both the domestic environment and parenting approaches.

Serum branch chain amino acids and aromatic amino acids ratio and metabolic risks in Koreans with normal-weight or obesity: a cross-sectional study

  • Ji-Sook Park;Kainat Ahmed;Jung-Eun Yim
    • Korean Journal of Community Nutrition
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2024
  • Objectives: Metabolic disease is strongly associated with future insulin resistance, and its prevalence is increasing worldwide. Thus, identifying early biomarkers of metabolic-related disease based on serum profiling is useful to control future metabolic disease. Our study aimed to assess the association of serum branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) ratio and metabolic disease according to body mass index (BMI) status among Korean adults. Methods: This cross-sectional study included 78 adults aged 20-59 years in Korea. We compared serum amino acid (AA) levels between adults with normal-weight and adults with obesity and investigated biomarkers of metabolic disease. We examined serum AA levels, blood profile, and body composition. We also evaluated the association between serum AAs and metabolic-related disease. Results: The height, weight, BMI, waist circumference, hip circumference, waist-hip-ratio, body fat mass, body fat percent, skeletal muscle mass, systolic blood pressure, and diastolic blood pressure were higher in the group with obesity compared to normal weight group. The group with obesity showed significantly higher levels of BCAA, AAA, and BCAA and AAA ratio. Further, BCAA and AAA ratio were significantly positively correlated with triglyceride, body weight, and skeletal muscle mass. The evaluation of metabolic disease risks revealed an association between the ratios of BCAAs and AAAs, hypertension, and metabolic syndrome. Conclusions: Our study is showed the associations between BCAA and AAA ratio, obesity, and obesity-related diseases using various analytical approaches. The elevated BCAA and AAA ratio could be early biomarkers for predicting future metabolic diseases in Korean population.

Effective length factors for the framed columns with variable stiffness (골조구성 변단면 기둥의 유효길이 계수)

  • 이수곤;김순철;오금열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.175-182
    • /
    • 2001
  • Effective length factor approach for framed column design has long played an important design-aid role. This approach, however, is effective only when the columns are in the form of prismatic or uniform cross sections. Structural engineers who have to design or analyse framed columns with variable cross sections need some means to do their job. By using the finite element method, the stability analysis of the isolated compression members with variable cross sections and that of the framed columns are performed. The parameters considered in the stability analysis are taper and sectional property parameters of the columns, the second moment of inertia ratio of beam to column, and beam span to column height ratio. On the basis of the stability analysis results, effective length factor formulas for the columns with variable sections are derived.

  • PDF