• 제목/요약/키워드: cross-domain recommendation

검색결과 7건 처리시간 0.021초

다중 융합 기반 심층 교차 도메인 추천 (Multiple Fusion-based Deep Cross-domain Recommendation)

  • 홍민성;이원진
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.819-832
    • /
    • 2022
  • Cross-domain recommender system transfers knowledge across different domains to improve the recommendation performance in a target domain that has a relatively sparse model. However, they suffer from the "negative transfer" in which transferred knowledge operates as noise. This paper proposes a novel Multiple Fusion-based Deep Cross-Domain Recommendation named MFDCR. We exploit Doc2Vec, one of the famous word embedding techniques, to fuse data user-wise and transfer knowledge across multi-domains. It alleviates the "negative transfer" problem. Additionally, we introduce a simple multi-layer perception to learn the user-item interactions and predict the possibility of preferring items by users. Extensive experiments with three domain datasets from one of the most famous services Amazon demonstrate that MFDCR outperforms recent single and cross-domain recommendation algorithms. Furthermore, experimental results show that MFDCR can address the problem of "negative transfer" and improve recommendation performance for multiple domains simultaneously. In addition, we show that our approach is efficient in extending toward more domains.

K-means 클러스터링과 트랜스포머 기반의 교차 도메인 추천 (Cross-Domain Recommendation based on K-Means Clustering and Transformer)

  • 김태훈;김영곤;박정민
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.1-8
    • /
    • 2023
  • 교차 도메인 추천은 다른 도메인에 있는 관련 사용자 정보 데이터와 아이템 데이터를 공유하는 방법입니다. 주로 사용자 중복이 많은 온라인 쇼핑몰이나 유튜브, 넷플릭스와 같은 멀티미디어 서비스 컨텐츠에서 사용됩니다. K-means 클러스터링을 통해 사용자 데이터와 평점을 기반으로 군집화를 실시하여 임베딩을 생성합니다. 이 결과를 트랜스포머 네트워크를 통해 학습한 후 사용자 만족도를 예측합니다. 그런 다음 트랜스포머 기반 추천 모델을 사용하여 사용자에게 적합한 아이템을 추천합니다. 이 연구를 통해 추천함으로써 더 적은 시간적 비용으로 초기 사용자 문제를 예측하고 사용자들의 만족도를 높일 수 있다는 결과를 실험을 통해 보여주었습니다.

영상 소비 데이터를 기반으로 한 교차 도메인에서 개인 맞춤형 도서 추천 (Personalized Cross-Domain Recommendation of Books Based on Video Consumption Data)

  • 임예빈;김현희
    • 정보처리학회 논문지
    • /
    • 제13권8호
    • /
    • pp.382-387
    • /
    • 2024
  • 최근 성인 독서량은 지속적으로 감소하는데 비해 영상 콘텐츠 소비가 증가하고 있다. 이에 따라 새로운 사용자에 대한 선호도 및 행동 패턴에 대한 정보가 없고 새로운 도서에 대한 사용자 평가나 구매 정보가 부족해 콜드 스타트 문제와 데이터 희소성 문제가 발생하고 있다. 본 논문에서는 영상물 콘텐츠 기반 도서 하이브리드 추천 시스템을 제안하였다. 제안하는 추천 시스템은 영상물의 콘텐츠를 활용하여 콜드 스타트 문제와 데이터 희소성 문제를 해결할 수 있을 뿐만 아니라, 전통적인 도서 추천 시스템에 비해 성능이 향상됨을 보여주었다. 또한 장르, 줄거리, 평점 정보 등 사용자 취향 정보까지 모두 반영한 개인 맞춤형 추천 결과를 제시하였다.

ATM VP 중계망의 성능 시험을 위한 OPNET 기반의 시뮬레이션 모델 구현 (Implementation of OPNET-based simulation model for the performance evaluation of ATM VP Transit network)

  • 구수용;김영탁
    • 한국시뮬레이션학회논문지
    • /
    • 제8권4호
    • /
    • pp.125-136
    • /
    • 1999
  • In the forthcoming public ATM/B-ISDN, the efficient resource management with pre-planned transit networking which public domain NNI signaling is essential to maintain high network utilization and to assure QoS to the multimedia service users. For this purpose the transit networks must be managed according to the bearer service capability which is defined by ATM Forum and ITU-T. In this paper, we introduce an implementation of ATM transit networking with ATM VP-XC(Virtual Path cross-connect) and US(Network Management System). The functions of ATM VP-XC and NMS have been simulated with OPNET 6.1 modules. We implemented the F4 OAM functions of ATM VP connection according to the ITU-T 1.610 recommendation. Also, the ATM VP transit networking is managed by the NMS according to the connection management architecture of the TWN(Telecommunications Management Network) /TINA ( Telecommunications Information Networking Architecture).

  • PDF

완전한 콜드 스타트 문제에서 교차 도메인 추천 시스템 (Cross-Domain Recommendation System in Complete Cold Start Problem)

  • 남규현;유재성;채경수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.514-518
    • /
    • 2019
  • 기존의 교차 도메인 추천은 일반적으로 서로 다른 도메인 데이터의 지식 결합이나 지식 공유를 바탕으로 진행된다. 이러한 방식들은 최소 한 개 이상의 도메인 데이터가 필요해서 모든 도메인의 피드백 데이터가 없는 실제 서비스 초기 상황에는 적합하지 않을 수 있다. 따라서 본 논문에서는 서비스 초반 모든 도메인의 피드백 데이터가 없고 콘텐츠 데이터만 존재하는 상황에서 교차 도메인 추천 시스템을 효과적으로 시작하기 위해 텍스트 임베딩, 클러스터링, 프로파일링 및 콘텐츠 기반 필터링을 활용한 추천 시스템 구성을 제안하고자 한다. 평가를 위해 여행지, 지역 축제, 공연을 포함하는 문화 관광 데이터와, 이에 대한 사용자 프로파일링 결과를 바탕으로 추천을 진행하였다. 그 결과, 콘텐츠 임베딩에 대한 유사도를 시각화하여 교차 도메인 아이템 간 유사성을 확인할 수 있었고, 사용자별 추천 결과를 통해 제안한 교차 도메인 추천 시스템이 유의미하게 동작함을 보였다.

  • PDF

상이한 아이템에 대한 사용자 선호도 활용 LOCA 접근 방법 연구 (Research of LOCA-Based Approach Applied to Users' Preferences on Items in Different Domains)

  • 백주련;고광호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.59-60
    • /
    • 2022
  • 갈수록 개인화되어 가는 추천시스템은 다양한 모델에 의해 그 성능이 향상되고 있으며 최근 추세는 다른 분야와 마찬가지로 딥러닝 기반 모델을 적용하여 추천 품질을 향상하고 있다. 그러나 대다수의 추천시스템은 하나의 도메인에서 개별적으로 사용될 뿐, 유사도메인이나 상이한 도메인이나 모두 다른 도메인에서의 사용자 성향이나 아이템 유사성을 거의 또는 전혀 고려하지 않고 있다. 이는 추천결과의 sparsity와 cold-start 문제를 더 악화시키는 원인이 된다. 본 논문은 다양한 딥러닝 모델 적용 추천 모델 중 오토인코더 모델을 지역특화 협업에 적용한 모델을 간략하게 소개하고 해당 모델을 상이한 도메인 간의 적용하기 위한 첫 단계로 손실함수 부분에 대해 개념적으로 설명하고자 한다.

  • PDF

사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측 (Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network)

  • 조윤호;김인환
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.159-172
    • /
    • 2010
  • 협업필터링 추천은 다양한 분야에서 활용되고 있지만 트랜잭션 데이터의 성격에 따라 추천 성능에 현저한 차이를 보이고 있다. 기존 연구에서는 이러한 추천 성능의 차이가 나타나는 이유에 대한 설명을 구체적으로 제시하지 못하고 있고 이에 따라 추천 성능의 예측 또한 연구된 바가 없다. 본 연구는 사회네트워크분석과 인공신경망 모형을 이용하여 협업필터링 추천시스템의 성능을 예측하고자 한다. 본 연구의 목적을 달성하기 위해 국내 백화점의 트랜잭션 데이터를 기반으로 형성되는 고객간 사회 네트워크의 구조적 지표를 측정한 후 이를 기반으로 인공신경망 모형을 구축하고 검증한다. 본 연구는 협업필터링 추천 성능을 예측할 수 있는 새로운 모형을 제시하였다는 점에서 그 의의가 있으며 이를 통해 기업들의 협업필터링 추천시스템 도입에 대한 의사결정에 도움을 줄 수 있을 것으로 기대된다.