• Title/Summary/Keyword: cross tunnel

Search Result 470, Processing Time 0.032 seconds

Development of Automation Technology for Modeling of Railway Infrastructure using BIM Library (BIM 라이브러리를 활용한 철도 인프라의 모델링 자동화 기술 개발)

  • Kim, Yun-Ok;Moon, So-Yeong;Yoon, Hee-Taek;Park, Young-Kon;Kim, Ji-Young
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.18-29
    • /
    • 2022
  • Recently, research on the application of BIM has continuously been active not only in architecture but also in civil engineering in order to improve work efficiency across the project's planning, design, construction and maintenance phases. However, the empirical applications of BIM targeting to civil engineering scope of construction sites still lags compared to architectural sized projects. This is because BIM tools are mainly based upon vertical structures of architecture, thereby most of them have difficulties and limitations to get utilized on horizontal structures of civil engineering. Therefore, this study intends to propose automation technology of design using BIM library and to indicate its field availability through case application on a railway project representing linear infrastructure. In addition, it put forward the utilization plan of the automation technology upto 4D and 5D by continue making use of the BIM model created in the project's design stage up through the maintenance stage. The novel method of the technology proposed in this paper incorporates the automatic creation of the BIM library based on two-dimensional tunnel cross-sections and sweeping of it over three-dimensional alignment to create a BIM model of linear infrastructure. The proposed technology is anticipated to improve the efficiecny of modeling process of railway projects based on linear structures.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

New Technique for the Reconstruction of Both Anteromedial & Posterolateral Bundles of ACL (전방십자인대의 전내측 다발 및 후외측 다발을 각각 재건하는 새로운 수술 수기)

  • Ha Chul-Won;Awe Soo-Ik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.195-199
    • /
    • 2002
  • This article is to report a new technique for reconstruction of the anteromedial and posterolateral bundles of anterior cruciate ligament by separate tensioning and fixation of the each bundle. Method : Tibial and femoral tunnels were made with conventional technique of anterior cruciate ligament reconstruction. Tibial tunnel was enlarged $5\~7$ mm in anterior-posterior direction to make oval it in cross section. When preparing the Achilles tendon allograft, bone plug portion was trimmed as the conventional technique. The tendinous portion was trimmed as two separate bundles by dividing the tendinous portion longitudinally, so the graft is shaped like 'Y'. The bone plug portion of allograft was inserted into the femoral tunnel and fixed with absorbable cross pins. Two ligamentous portionss of the distal part of the grafts were tensioned separately at the external orifice. Anteromedial bundle was fastened under maximum tension with the knee flexed 90 degrees by post-tie method. The posterolateral bundle was fixed by the same technique with the knee in full extension. Then, an absorbable interference screw was inserted between the two bundles upto the upper end of the tibial tunnel, to get more initial rigidity of the reconstructed graft as well as to locate the two bundles in more anatomic position.

  • PDF

Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis (이차원 수치해석에 의한 강지보 성능을 고려한 숏크리트 라이닝의 부재력 평가 방법)

  • Ha, Tae-Wook;Kim, Dae-Young;Shin, Young-Wan;Yang, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.269-282
    • /
    • 2008
  • In general, the effects of steel ribs are not considered in the numerical analysis of tunnel design. However, attempts have been increased recently to consider these effects in the analysis of shallow tunnels in soft ground, based on the fact that the steel ribs embedded in the shotcrete take a role to support some portion of the redistributed load due to excavation. In such analyses, the steel ribs can be considered in four different methods: (1) a conventional method where the steel ribs are not considered, (2) a method using the equivalent composite cross section in which the bending moment of shotcrete is not considered, (3) a method using the equivalent composite cross section in which both the compressive stress and the bending moment for the shotcrete and steel rib are considered, and (4) a method using beam elements for the shotcrete and the steel rib, respectively. These methods are adopted in the numerical analysis using FLAC 2D to investigate stresses of both the shotcrete and the steel rib. The overall results show that the analyses are more practical and economical when the effects of steel rib are considered fer the methods (2), (3), and (4). Since the results of those analyses considering steel rib capacity may be different according to the ground condition, it will be necessary to consider the appropriate method among them in accordance with design conditions.

  • PDF

An Analysis of Cold Air Generation Area Considering Climate-Ecological Function -A Case Study of Changwon, South Korea- (기후생태적 기능을 고려한 찬공기 생성지역 분석 -창원시를 대상으로-)

  • Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2010
  • The purpose of this study is to find out cold and fresh air producing areas using climate-ecological functions in Changwon city, Gyeongsangnam-do, South Korea. The evaluation of climate-ecological functions were composed of the six factors: patch size with cold air generation and inflow functions, farmland and grassland ratio, mean slope degree, cross section types, mean slope length and roughness of bottom in valley. The analysis results of each evaluation factor in the study area were divided into 5 grades according to the capacity of cold air generation. The first-grade area with the highest factor values for cold air generation was take up 3.51% of the total study area, second grade was 13.48%, third grade was 31.65%, fourth grade was 27.28%, and fifth grade was 24.09%. According to the spatial distribution of cold air producing areas, the valleys around Mt. Bongnim, Changwon tunnel, and Anmin tunnel had higher evaluation grade. It will require the future research to establish the climate-ecological conservation areas and to construct the wind corridor based on the long-term microclimatic monitoring.

Performance evaluation of high-performance lattice girder using numerical analysis (수치해석을 통한 고성능 격자지보재의 성능 평가)

  • Kim, Dong-Gyou;Ahn, Sungyoull
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.897-908
    • /
    • 2019
  • The objective of this study is to evaluate the field support performance of highperformance lattice girder (BK-Lattice Girder) by using numerical analysis. Three types (50, 70, 95-type) of existing and high performance lattice girders were applied to the cross section of highway 2, 3, and 4 lane tunnels to compare the supporting performance. The numerical analysis was the finite element method and the lattice girder was modeled in three dimensions with an elasto-plastic frame. The ground was modeled as a spring receiving only compression. The load was applied as a concentrated load on the central ceiling of the tunnel section. The yield strengths of the lattice girders were determined from the numerical results to compare the supporting performance of lattice girder. In case of 50-type, the yield strengths of high-performance lattice girders were increased by 6.7~10.0% compared with those of the existing lattice girders. In the case of 70-type, the high-performance lattice girders increased yield strengths by 12.1~14.9% than the existing lattice girder. In the case of 95-type, the high-performance lattice girders increased yield strengths by 13.3~20.0% than the existing lattice girder. As a result of numerical analysis, it was considered that the high-performance lattice girder supported better than the existing lattice girder when only the lattice girders were constructed.

Characters of Fracture-filling Minerals in the KURT and Their Significance (한국원자력 연구원 지하처분연구시설(KURT)의 단열충전광물 특성과 그 의미)

  • Lee, Seung-Yeop;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • The KAERI Underground Research Tunnel (KURT) located in KAERI (Korea Atomic Energy Research Institute) was recently constructed following the site investigation in 2003. Its dimension is 180 m in length, 6 m in width, and 6 m in height, and it has a horseshoe-like cross-sec-lion and is located in the ground to the depth of 90 m. When the tunnel was dug into the ground with 100 m in length, fresh rocks, weathered rocks and fracture-filling materials were taken and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, smectite and chlorite including calcite, which are filling some faults and cracks of the KURT rock. The illite and smectite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. There are high concentrations of U and Th in the rocks coated with iron-oxides and filled with secondary materials as compared with those in the fresh rocks. It seems that the radionuclides, which are slowly leached from the parent rocks or exist as a dissolved form in the groundwater and hydrothermal solution, may have been migrated along the fractures and thereafter selectively sorbed and coprecipitated on the iron-oxides and the fracture-filling materials. These results will be very useful far the evaluation of environmental factors affecting the nuclides migration and retardation when long-term safety is considered to the geological disposal of high-level radioactive wastes in the future.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.