• Title/Summary/Keyword: cross sectional shape

Search Result 477, Processing Time 0.034 seconds

Mineralogical Studies on Luster of Seawater Cultured Pearls, Tongyeong, Korea (경남 통영 해수양식진주의 광택에 대한 광물학적 연구)

  • Cho, Hyen Goo;Kim, Soon-Oh;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • A mineralogical analysis on the factors affecting the luster of pearls was carried out using gravity measurement, optical microscope observation, X-ray diffraction analysis, and scanning electron microscopy. We divided the seawater cultured pearls from Tongyeong into the following four types based on luster and shape; good luster and round (LR), lackluster and round (LLR), lackluster and baroque (LLB), and lackluster and two nucleus (LTN) pearls. Pearls with high-quality luster had slightly lower specific gravity as compared to pearls with low-quality luster, but both these types of pearls are within the specific gravity range of commercial pearls. Regarding the cross-sectional thickness of the mother-of-pearl layer, LR pearls showed a uniform thickness of about 0.3 mm in average. On the other hand, LLR pearls were characterized by relatively thinner, but uniform thickness. LTN and LLB pearls showed a tendency of significantly large variation in thickness even within a single pearl. For the surface of pearls, pearls with high-quality luster showed narrower and clearer growth lines of aragonite crystals as compared to pearls with low-quality luster. Pearls with high-quality luster were characterized by fewer aragonite crystal lattice defects as compared to pearls with low-quality luster, and the former showed parallel arrangement, thinner thickness, and less difference in thickness on the surface and inside. If a pearl has a prismatic layer, it is composed of aragonite with calcite in the prismatic and nacreous layer, and calcite content is very high in the lackluster pearl. Pearls without a prismatic layer were devoid of calcite irrespective of their quality of luster, and were composed of aragonite.

Evaluation of Cell-Wall Microstructure and Anti-Swelling Effectiveness of Heat-Treated Larch Wood (낙엽송 열처리재의 세포벽 미세구조 및 항팽윤효율 평가)

  • PARK, Yonggun;JEON, Woo-Seok;YOON, Sae-Min;LEE, Hyun Mi;HWANG, Won-Joung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.780-790
    • /
    • 2020
  • In this study, the cell-wall microstructure and anti-swelling effectiveness (ASE) of heat-treated larch wood were evaluated and the correlation between them was analyzed. For this purpose, some larch lumbers were heat-treated for 12, 18, and 24 hours at temperatures of 190℃ and 220℃. By observing the scanning electron microscopy cross-sectional image of the heat-treated larch, it was confirmed that the shape of heat-treated wood cell changed, the cut-section of the wood cell wall was rough, and the intercellular space has become wide as the intercellular bonds had broken because of heat-treatment. In addition, the evaluation of the swelling for each treatment condition revealed that, as the heat-treatment temperature and duration increased, the amount of absorbed water and swelling decreased and the ASE increased. The decrease in the amount of absorbed water is thought to be affected by the chemical change in the cell wall by heat-treatment. On the contrary, the decrease in the swelling and the increase in the ASE are thought to be due to a combination of chemical changes and physical changes such as structural changes in the cell wall.

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

A Study on the Safe Transportation of a Non-Standardized Cargo (Steel Box) for General Cargo Ships (일반화물선에서 비표준화물(철재상자)의 안전한 운송을 위한 고찰)

  • Kim, Ji-Hong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.444-449
    • /
    • 2019
  • The "Standard on Cargo Stowage and Securing" implemented to safely stow and secure the cargo of international shipping vessels and domestic car ferries, has also been applied to general cargo ships transported between domestic ports since J anuary 2018. As a result, a new type of cargo, such as a non-standardized steel box transported by general cargo ships to major ports in Korea from Jeju Island in Korea, must be factored as the method of safe stowage and securing according to the legal classification of cargo. This study analyzed the legal status of a steel box by analyzing the actual size, shape of steel box through field verification, collection of data from relevant agencies and finally proposed the methods of safe stowage and securing for a steel box in the cargo holds of general cargo ships. According to the relevant domestic laws and international regulations, steel boxes could be classified as pallette boxes with protective outer packing, a type of non-standardized cargo. Additionally, when a steel box is loaded into the cargo hold of general cargo ships, a method of loading and transporting them must be factored so that there is no gap in the cargo hold of ships. Verification of the safety of the tightly loading and transportation measures in the reviewed cargo hold was verified through safety of the hull structure and securing of the ship's stability. As a result of verification of the safety of the hull structure, the value of the structural strength on both sides and the floor of the cargo hold for the total weight of cargo that can be loaded in the cargo hold was satisfied, and the value of the ship's stability was satisfied with the value of GoM and the restoration of the three cross-sectional stability curve areas.

A Comparison of Stainless-Steel File and MFile-System® Ni-Ti Rotary Instrument in Canal Preparation using Dental Computed Tomography (치과용 단층촬영을 이용한 Stainless-Steel File과 MFile-System® 전동식 기구의 근관 성형 능력에 대한 비교 연구)

  • Seo, Dong-Jin;Yoon, Mi-Ran;Lee, Rin;Yu, Mi-Kyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • Objectives The aim of this study is to compare the quality of root canal preparation completed using MFile-$System^{(R)}$ instrument ( Komet, Gebr.Brsaseler, Germany) and conventional stainless steel file in the canals of Maxillary molar teeth that had a canal curvature between $25^{\circ}$ or more Materials & Methods Buccal canals of 24 first and second maxillary molar teeth, extracted for periodontal and prosthetic reasons were used. Tissue fragments and calcified debris were removed from teeth by scaling and the teeth were stored in 10% formalin solution for 24 hour. Then, teeth were stored in saline until used. To be included the roots had to have completed formed apices and angle of curvature ranging between $25^{\circ}$ or more according to the criteria described by Schneider(1971). Palatal and Second mesiobuccal canals were not included. Teeth were embedded into transparent acrylic. The teeth were randomly divided into two experimental groups. All teeth were scanned by Dental CT (PSR9000N, Asahi, Japan) to determine the root canal shape before instrumentation. Image slices were prepared from the apical end point to the pulp chamber. The first two sections were 2 mm from the apical end of root and 2 mm below the orifice. Further section was recorded, dividing the distance between the sections of apical and coronal levels into two equal lengths. 12 teeth were instrumented using stainless steel fileand another 12 teeth were instrumented using MFile-$System^{(R)}$. Following the completion of the instrumentation, the teeth were again scanned and compared with the cross sectional images taken prior to canal preparation. Amount of transportation and centering ability was assessed. Student's t-test was used for statistical analysis. Result Less transportation occurred with MFile-$System^{(R)}$ rotary instrumentation than stainless steel instrument. MFile-$System^{(R)}$ had better centering ability than stainless steel instrument. Conclusion MFile-$System^{(R)}$ rotary instrumentation transported canals less and had good centering ability.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

The Effects of Tunnel Geometrical Characteristics and Canopy Installation on the Ventilation and Fire Propagation (터널의 기하학적 형태 및 캐노피 설치가 터널 환기 및 화재 확산에 미치는 영향 분석)

  • Lee, Chang-Woo;Suh, Ki-Yoon;Kim, Jung-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.325-334
    • /
    • 2006
  • Understanding the airflow characteristics within the canopy structure installed between closely adjacent tunnels either for light adaptation or for protection from snow hazards is required for the normal ventilation as well as safety system design. Grade, horizontal alignment, cross-sectional area and shape are known to substantially influence the fire smoke behavior and their influences raise great concern for the safety design. This paper aims at studying the effects of tunnel geometrical characteristics and canopy installation on the ventilation and fire propagation through CFD analysis. In the case of 145m long canopy, 50% opening ratio is preferred with respect to the airflow pattern and ventilation efficiency. When a 20MW fire occurs in a 1.8km-long tunnel and four 1250mm reversible jet fans are instantly turned on, smoke concentration at 40m downstream of the fire decrease 13% for the upgrade tunnel with 2% gradient and increases 20% for -2% gradient, compared to the standard horizontal tunnel. Backlayering is observed within 45m-long segment toward the entrance in 2% down-graded tunnel. In a rectangular tunnel, there is no significant difference of smoke concentration as well as velocity profile from the standard crown tunnel. Three-laned tunnel shows lower level of both profiles and backlayering is detected up to 50m upstream of the fire, while the risky situation rapidly disappears thereafter.

Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model (2차원 부정류 모형을 이용한 둔치의 수리특성 분석)

  • Ku, Young Hun;Song, Chang Geun;Kim, Young Do;Seo, Il Wo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.997-1005
    • /
    • 2013
  • Since the cross-sectional shape of the Nakdong river is compound type, the water stage rises up to the top of the flood plane, as the flow discharge increases during the extreme rain storm in summer. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and hydrophilic facilities located in the flood plain. Therefore it is necessary to analyze the hydraulic characteristics evolved by the extreme rain storm in the flood plain. The study reach ranging from the Gangjeong Goryeong Weir and the Dalseong Weir, where several hydraulic facilities are located along the channel, was selected and numerical simulations were conducted for 42 hours including the peak flood of the typhoon Sanba. The 2-D transient model, FaSTMECH was employed and the accuracy of the model was assessed by comparing the water level between the simulation results and the measured ones at a gauging station. It showed a high correlation with $R^2$ of 0.990, AME of 0.195, and RMSE of 0.252. In addition, the inundation time, the inundation depth, the inundation velocity, and the shear stress variation in the flood plain facilities were analyzed.

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.