• Title/Summary/Keyword: cross section form

Search Result 281, Processing Time 0.027 seconds

Free Vibration of Tapered Beams Under Tensile Axial Force (軸引張力을 받는 變斷面 보의 自由振動)

  • Lee, Byeong-Gu;Kim, Yeon-Tae;Mo, Jeong-Man
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 1992
  • The main purpose of this paper is to present both the natural frequencies and mode shapes of tapered beams under tensile axial force. The differential equation governing planar free vibration for tapered beams under tensile axial force is derived as nondimensional form. The three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and constraints are applied in numerical examples. The lowest four nondimensional natural frequencies are reported as the function of nondimensional tensile axial force. The fundamental natural frequencies are presented when section ratios and nondimensional axial forces are varied. The effects of cross sectional shapes are reported and some typical mode shapes are also presented.

  • PDF

CAD Interface using Topology Optimization (위상최적설계 결과를 이용한 CAD 인터페이스)

  • Kim, Seong-Hoon;Min, Seung-Jae;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.281-289
    • /
    • 2009
  • Topology optimization has been widely used for the optimal structure design for weight reduction and high performance. Since the result of three-dimensional topology optimization is represented by the discrete material distribution in finite elements, it is hard to interpret from a design point of view. In this paper, the method for interpreting three-dimensional topology optimization resuIt into a series of cross-sectional curve representation is proposed and interfaced with the existing CAD system for the practical use. The concept of node density and virtual grid is introduced to transform element density values into grid density and material boundaries in each cross section are identified based on the element volume rate to satisfy the amount of material specified in the original design intent. Design exampIes show that three-dimensional topology result can be converted into a form of curve CAD model and the seamless interface with CAD software can be achieved.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

Development of Dress Forms for the Middle-high School Girls Based on their Lower Body Types (여중생의 하반신 체형분류에 따른 유형별 인대개발)

  • 임지영;김혜경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.886-897
    • /
    • 1999
  • Fitness of clothes becomes a major concern in apparel industry. But girls had difficulties to buy ready-made clothes of good fit. To solve this problem it is necessary to classify girls' lower body Into several kinds of somatotypes and to develop dress form. The purposes of this study was to classify lower body types of middle-high school an provide the dress forms based on the analysis of their lower body types. The subjects for anthropometric measurement were 402 middle-high school girls of 13 to 15 year-old. The result of factor analysis indicated that 5 factors were extracted from anthropometric measurments through factor analysis and those factors comprise 71% of total variance. 4 clusters were categorized using 5 factor scores by cluster analysis 4 lower body dress forms for middle-high school girls were made of gypsum mould. By the analysis of more photograph three dimensional characteristics of somatotype and overlapped cross-section diagrams were analyzed.

  • PDF

Comparison of Concrete Setting Properties for the Application of Tapered Slip-Form method (변단면 슬립폼 공법 적용을 위한 콘크리트의 응결 특성 비교)

  • Song, Yong-Soon;Yang, Woo-Yong;Jung, Gil-Su;Seo, Young-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.459-460
    • /
    • 2010
  • For the application of slip form method to the pylon of Yi Sun-shin bridge which has much variation in its cross section, the change of setting properties of concrete due to changing weather and long pumping distance has to be taken into consideration. Different setting properties of several types of cement according to the amount of compound and ambient temperature were observed in this paper.

  • PDF

Aerodynamic Methods for Mitigating the Wind-Induced Motions on the Tall Buildings (고층건축물의 풍진동 저감을 위한 공기역학적 방법)

  • Ha Young-Cheol;Kim Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.431-434
    • /
    • 2002
  • The excessive wind-induced motion of tall buildings most frequently result from vortex shedding induced across-wind oscillations. This form of excitation is most pronounced far relatively flexible, lightweight and lightly damped structure, e.g. tall building. This paper discusses aerodynamic means for mitigating the across-wind vortex shedding induced in such situations. Emphasis is on the change of the building cross section to design the building with openings from side to side which provide pressure equalization and tend to reduced the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. Wind tunnel test have been carried out on the Kumoh National University of Technology using rigid models with twenty-four kinds of opening shapes. Form these results, the effective opening shape, size and location for building to reducing wind-induced vortex shedding and responses are pointed out.

  • PDF

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

A Study on the Characteristic of the Landscape of Highrize Housing Complex at the street (가로변 고층집합주거단지 경관 특성에 관한 연구)

  • 김윤학;박향룡;이봉수;조용준
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.223-228
    • /
    • 2002
  • This study is a preference reversal about a policeman image and evaluation by roadside higher stories meeting dwelling pot to the center, and it is an examination, the thing that it analyzed by proposals. Preference anger Was high, and as for the results, the pot which I gave, and bronze was mixed, and formed the skyline with a change appeared with a height and a form of reveal a cross section in meeting dwelling pot star preference evaluation results cluster older brother contrariety. Also, it was arranged the parallel that older brother was parallel in the printing which was monotonous if I wore 1, and the pot that time a little shielding anger was high was evaluated because preference anger was low. Therefore, consideration about a the number of layers interval change must be in order a higher stories meeting dwelling pot reduces that I go for a closing of crossways in the future, and to be able to feel variety with a form enemy.

  • PDF

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames

  • Izadpanaha, Mehdi;Habibi, AliReza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.169-188
    • /
    • 2015
  • There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.