• Title/Summary/Keyword: cross member

Search Result 360, Processing Time 0.027 seconds

Design of PFRP I and Box Shape Compression Members Considering Stress Distribution in the Cross-section (단면 내 응력분포를 고려한 I형 및 Box형 단면의 PFRP 압축재의 설계)

  • Choi, Jin-Woo;Kim, Jae-Wook;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Pultruded fiber reinforced polymeric plastic (PFRP) structural members may be one of attractive alternatives of the structural members in the civil engineering applications because of its many advantageous mechanical properties. However, they have relatively low modulus of elasticity and also cross-sections of structural shapes are composed of thin plate components such as flange and web. Therefore, structural stability is an important issue in the design of pultruded structural compression members. For the design of pultruded structural member under compression, buckling and post-buckling strengths of plate components may be taken into account. In the structural steel design following AISC/LRFD, in addition to the buckling strength, the nonuniform stress distribution in the section is incorporated with a form factor. In this paper, the form factor for the design of PFRP structural member under compression is investigated through the analytical study. Furthermore, the process for the determination of the form factor is suggested.

e-Engineering Framework to Support Collaborative Design of Automotive Suspension Systems (협업설계를 위한 엔지니어링 프레임워크 개발에 관한 연구 -자동차 서스펜션 모듈에의 적용-)

  • Park, Seong-Whan;Lee, Jai-Kyung;Lee, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.555-561
    • /
    • 2008
  • This paper describes an e-Engineering framework to support collaborative design of automotive suspension systems developed at KIMM(Korea Institute of Machinery and Materials). The e-Engineering framework is proposed and developed on the base of the multi-layered software agents including engineering task agent which is generated from the domain knowledge of experts. The developed framework is aim to widely spread application to the small and medium enterprises by adopting open source technologies such as JADE (Java Agent Development Framework) and by using the independent characteristics related with applicant H/W and 81W system. This framework can provide an integrated design environment to support distributed personnel, design activities and engineering resources during product development process. For the validation of the system's applicability and efficiency, the several practical design processes for automotive suspension systems of RR/FR lower arms and RR cross member are applied and discussed.

A Study on the Geometric Optimization of Truss Structures by Decomposition Method (분할최적화 기법에 의한 트러스 구조물의 형상최적화에 관한 연구)

  • 김성완;이규원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.73-92
    • /
    • 1987
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the cross-sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes, loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures, which can eliminate the above mentioned limitations, is developed in this study. The algorithm proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton Raphson method. In the second level, which also consists of two phases the geometric shape is optimized utillzing the unindirectional search technique of the Powell method which make it possible to minimize only the objective functlon. The algorithm proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two- levels algorithm proposed in this study is safely applicable to any design criteria, and the convergency rate is relatively fast and stable compared with other iteration methods for the geometric optimization of truss structures. It was found for the result of the shape optimization in this study to be decreased greatly in the weight of truss structures in comparison with the shape optimization of the truss utilizing the algorithm proposed with the other area optimum method.

  • PDF

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

Assessment of LMX as Mediator in Procedural Justice - Organizational Citizenship Behavior Relationship

  • Salman, Ahmad
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Purpose: Organizational justice is not considered as objective variable, but considerably, it is the employee's perceptions about an organization. Since the last four decades, researchers endorsed the significant importance of organizational justice on motivation and work behaviours like turnover intentions, trust, motivation, organizational commitment, job satisfaction, in-role and organizational citizenship behaviour. Accordingly, scant literature is available on procedural justice - organizational citizenship behaviour via mediating role of leader-member exchange (LMX) in higher education context especially in Asian countries like Pakistan. Research Design, Data and Methodology: Cross - sectional study design was used and data was collected from the 452 permanent and contractual teaching faculty serving in different positions at private and public sector degree awarding institutes / universities accredited by Higher Education Commission (HEC) of Pakistan. Mediated regression analysis, as proposed by Baron and Kenny (1986), was employed to address the research hypothesis. Results: Results showed that procedural justice and LMX was positively impacted on OCB and LMX also fully mediates the relationship of procedural justice and organizational citizenship behaviour (OCB). Conclusion: The result indicated that LMX fully mediates the relationship of procedural justice and organizational citizenship behaviour.

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

A Study on Stability of Arch-Type Vinyl House Structures (아치형 비닐하우스 구조의 안정성 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.81-88
    • /
    • 2014
  • Construction of vinyl house structures is increasing because they do not have a large cross section as non-permanent structures. Vinyl house structures are apt to collapse by snow load because they have a small size member as a temporary building. Therefore, it is very important to ensure not only the stiffness of the individual member, but also the overall stability of three-dimensional arch-type vinyl house structures. The purpose of this study is to estimate the stability of arch-type vinyl house structures that have a various curvature under the vertical load such as snow load. As a result of the study, the buckling load of V27 model is the largest, and the values of buckling load have a tendency to increase with increasing H(height of arch) in the case of $H{\leq}2.75m$, but to decrease with increasing H in the case of $H{\geq}2.75m$.

Free Vibrations of Tapered Cantilever Arches with Variable Curvature (변단면 변화곡율 캔틸레버 아치의 자유진동)

  • 이병구;이용수;오상진
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.353-360
    • /
    • 2000
  • Numerical methods are developed for calculating the natural frequencies and mode shapes of the tapered cantilever arches with variable curvature. The differential equations governing the free vibrations of such arches are derived and solved numerically, in which the effect of rotatory inertia is included. The parabolic shape is chosen as the arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch. Comparisons the natural jfrequencies between this study and finite element method SAP 90 seve to validate the numerical method developed herein. The lowest four natural frequencies are reported as a function of four non-dimensional system parameters. The effects of both the rotatory inertia and cross-sectional shape are reported. Also, the typical mode shapes of stress resultants as well as the displacements are reported.

  • PDF

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

Energy Absorbing Control Characteristic of Al Thin-walled Tubes (AL 박육부재의 에너지 흡수 제어특성)

  • Yang, Yong-Jun;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The structural members must be designed to control characteristics of energy absorption for protecting passengers in a car accident. Study on collapse characteristics of structural member is currently conducted in parallel with other studies on effective energy absorption capacity of structural members with diverse cross-sectional shapes and various materials. This study concerns the crashworthiness of the widely used vehicle structural members, square thin-walled tubes, which are excellent in the point of the energy absorption capacity. The absorbed energy, mean collapse load and deformation mode were analyzed for side member which absorbs most of the collision energy. To predict and control the energy absorption, controller is designed in consideration of its influence on height, thickness and width ration in this study. The absorbed energy and mean collapse load of square tubes were increased by $15{\sim}20%$ in using the controller, and energy absorbing capability of the specimen was slightly changed by change of the high controller's height.