• Title/Summary/Keyword: cross fracture

Search Result 296, Processing Time 0.028 seconds

Feasibility of Early Definitive Internal Fixation of Pelvic Bone Fractures in Therapeutic Open Abdomen

  • Choi, Kyunghak;Jung, Kwang-Hwan;Keum, Min Ae;Kim, Sungjeep;Kim, Jihoon T;Kyoung, Kyu-Hyouck
    • Journal of Trauma and Injury
    • /
    • v.33 no.1
    • /
    • pp.18-22
    • /
    • 2020
  • Purpose: Damage control laparotomy has contributed to improved survival rates for severe abdominal injuries. A large part of severe abdominal injury occurs with a concomitant pelvic bone fracture. The safety and effectiveness of internal fixation of pelvic bone fracture(s) has not been established. The aim of the present study was to evaluate infection risk in the pelvic surgical site in patients who underwent emergent abdominal surgery. Methods: This single-center retrospective observational study was based on data collected from a prospectively maintained registry between January 2015 and June 2019. Patients who underwent laparotomy and pelvic internal fixation were included. Individuals <18 and ≥80 years of age, those with no microbiological investigations, and those who underwent one-stage abdominal surgery were excluded. Comprehensive statistical comparative analysis was not performed due to the small number of enrolled patients. Results: A total of six patients met the inclusion criteria, and the most common injury mechanism was anterior-posterior compression (67%). The average duration of open abdomen was 98 hours (range, 44-98), and the time interval between abdominal closure and pelvic surgery was 98 hours. One patient (16.7%) died due to multi-organ dysfunction syndrome. Micro-organisms were identified in the abdominal surgical site in five patients (83%), with no micro-organisms in pelvic surgical sites. There was no unplanned implant removal. Conclusions: Internal fixation of pelvic bone fracture(s) could be performed in the state of open abdomen, and the advantages of early fixation may countervail the risks for cross contamination.

A Study on Fracture Toughness of Metal Matrix Composites Reinforced with $Al_{18}B_4O_{33}$ ($Al_{18}B_4O_{33}$휘스커 강화 금속기 복합재료의 파괴인성에 관한 연구)

  • Park, Sung-Ho;Choi, Yong-Bum;Park, Won-Jo;Huh, Sung-Chul;Yun, Han-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.335-340
    • /
    • 2002
  • In recent years, the study of metal matrix composite has increased specially, aluminum alloy, research and development are briskly progress to find new metal matrix composite. this study is following the this purpose; This study is used metal matrix composite that was produced by matrix, AC4CH. and reinforcement $A_{18}B_4O_{33}$ metal matrix composite to add $Al_2O_3,\;TiO_2$ for strengthen of binding together among the Whisker. Each Metal matrix composite is produced using the squeeze casting method. Fracture tounghness test was in accordance with the provisions of ASTM E399; Specimen was produced half-size CT specimen W=25mm, B=12.5mm, Cross head speed 0.05mm/min in room temperature. The plane strain fracture toughness $K_{IC}$ is $8.7MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH., $9.28MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH added $TiO_2$. and $Al_2O_3$ but AC4CH alloy was violated the critical stipulated by ASTM standard for a valid measurement of $K_{IC}$. In case of, it was performed $I_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820

  • PDF

Fracture Behavior of CFRP by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 CFRP의 파괴 거동)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Lee, Sang-Kee;Kim, Hyun-Soo;Moon, Chang-Kwon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, however, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency analysis methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, damage process of a cross-ply carbon fiber reinforced plastic (CFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of CFRP specimens were used to determine the characteristics of AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanisms in CFRP such as mix cracking, debonding, fiber fracture and delamination.

  • PDF

Fracture incidence of Reciproc instruments during root canal retreatment performed by postgraduate students: a cross-sectional retrospective clinical study

  • Liliana Machado Ruivo;Marcos de Azevedo Rios;Alexandre Mascarenhas Villela;Alexandre Sigrist de Martin;Augusto Shoji Kato;Rina Andrea Pelegrine;Ana Flavia Almeida Barbosa;Emmanuel Joao Nogueira Leal Silva;Carlos Eduardo da Silveira Bueno
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.49.1-49.8
    • /
    • 2021
  • Objectives: To evaluate the fracture incidence of Reciproc R25 instruments (VDW) used during non-surgical root canal retreatments performed by students in a postgraduate endodontic program. Materials and Methods: From the analysis of clinical record cards and periapical radiographs of root canal retreatments performed by postgraduate students using the Reciproc R25, a total of 1,016 teeth (2,544 root canals) were selected. The instruments were discarded after a single use. The general incidence of instrument fractures and its frequency was analyzed considering the group of teeth and the root thirds where the fractures occurred. Statistical analysis was performed using the χ2 test (p < 0.01). Results: Seven instruments were separated during the procedures. The percentage of fracture in relation to the number of instrumented canals was 0.27% and 0.68% in relation to the number of instrumented teeth. Four fractures occurred in maxillary molars, 1 in a mandibular molar, 1 in a mandibular premolar and 1 in a maxillary incisor. A greater number of fractures was observed in molars when compared with the number of fractures observed in the other dental groups (p < 0.01). Considering all of the instrument fractures, 71.43% were located in the apical third and 28.57% in the middle third (p < 0.01). One instrument fragment was removed, one bypassed, while in 5 cases, the instrument fragment remained inside the root canal. Conclusions: The use of Reciproc R25 instruments in root canal retreatments carried out by postgraduate students was associated with a low incidence of fractures.

OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS

  • Ko, S.;Lee, J.M.;Hong, S.I.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.421-428
    • /
    • 2011
  • The out-of-pile mechanical performance and microstructure of recrystallized Zr-1.5 Nb-S alloy was investigated. The strength of the recrystallized Zr-1.5Nb-O-S alloys was observed to increase with the addition of sulfur over a wide temperature range, from room temperature up to $300^{\circ}C$. A yield drop and stress serrations due to dynamic strain were observed at room temperature and $300^{\circ}C$. Wavy and curved dislocations and loosely knit tangles were observed after strained to 0.07 at room temperature, suggesting that cross slip is easier. At $300^{\circ}C$, however, dislocations were observed to be straight and aligned along the slip plane, suggesting that cross slip is rather difficult. At $300^{\circ}C$, oxygen atoms are likely to exert a drag force on moving dislocations, intensifying the dynamic strain aging effect. Oxygen atoms segregated at partial dislocations of a screw dislocation with the edge component may hinder the cross slip, resulting in the rather straight dislocations distributed on the major slip planes. Recrystallized Zr-Nb-S alloys exhibited ductile fracture surfaces, supporting the beneficial effect of sulfur in zirconium alloys. Oxidation resistance in air was also found to be improved with the addition of sulfur in Zr-1.5 Nb-O alloys.

High Resolution Cross-well Seismic Tomography for Description of Shear Zone in Inter-well Region (시추공 간 전단대 특성 규명을 위한 고해상 탄성파 토모그래피)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.255-260
    • /
    • 2006
  • Measurements in two adjacent (about 1.5 m separation) boreholes reveal that there is a significant degree of variations in the width and property (permeability) of shear zones in the granitic rock. A high frequency (>10 kHz) cross-well seismic tomography was conducted to characterize the features of permeability distribution at the shear zones in the inter-well region. At the shear zones, the correlation between the permeability at the well location and the velocity pattern shown in the cross-well velocity tomogram suggests that a high resolution velocity tomogram may provide useful information for the shear zone characteristics, such as permeability, fracture density, width, and length.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

Potential repository domain for A-KRS at KURT facility site (KURT 부지 조건에서 A-KRS 입지 영역 도출)

  • Kim, Kyung-Su;Park, Kyung-Woo;Kim, Geon-Young;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The potential repository domains for A-KRS (Advanced Korean Reference Disposal System for High Level Wastes) in geological characteristics of KURT (KAERI Underground Research Tunnel) facility site were proposed to develop a repository system design and to perform the safety assessment. The host rock of KURT facility site is one of major Mesozoic plutonic rocks in Korean peninsula, two-mica granite, which was influenced by hydrothermal alteration. The topographical features control the flow lines of surface and groundwater toward south-easterly and all waters discharge to Geum River. Fracture zones distributed in study site are classified into order 2 magnitude and their dominant orientations are N-S and E-W strike. From the geological features and fracture zones, the potential repository domains for A-KRS were determined spatially based on the following conditions: (1) fracture zone must not cross the repository; and (2) the repository must stay away from the fracture zones greater than 50 m. The western region of the fracture zones in the N-S direction with a depth below 200 m from the surface was sufficient for A-KRS repository. Because most of the fracture zones in N-S direction were inclined toward the east, we expected to find a homogeneous rock mass in the western region rather than in the eastern region. The lower left domain of potential domains has more suitable geological and hydrogeological conditions for A-KRS repository.

BI-AXIAL FRACTURE STRENGTH OF RESIN MODIFIED GLASS IONOMERS (레진강화형 글라스아이오노머의 2 축 굽힘강도)

  • Lee, Yong-Keun;Im, Mi-Kyung;Koo, Dae-Hoi;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.751-760
    • /
    • 1997
  • Resin-modified glass ionomers were introduced in 1988 to overcome the problems of moisture sensitivity and low early mechanical strengths of the conventional glass ionomers, and to maintain their dinical advantages. The purpose of this study was to evaluate the bi-axial fracture strength of four resinmodified glass-ionomers(Fuji II LC, Vitremer, Dyract, VariGlass), one resin composite material(Z-100), and one conventional glass-ionomer(Fuji II). Three specimens of each material and shade combination were made according to the manufacturers' instructions. Materials were condensed into metal mold with a diameter of 10mm and a thickness of 2.0mm and pressed between two glass plates. Resin-modified glass ionomers were polymerized using a Visilux II light curing unit by irradiating for 60 seconds from both sides, and conventional glass ionomer was cured chemically. After specimens were removed from the molds, surfaces were polished sequentially on wet sandpapers up to No. 600 silicone carbide paper. The specimens were thermocycled for 2,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ distilled water. After thermocycling, bi-axial fracture strengths were measured using a compressive-tensile tester(Zwick 1456 Z020, Germany) with the cross head speed of 0.5mm/minute. The results were as follows: 1. Two factors of the kind and color of materials had a main effect on bi-axial fracture strength (p<0.01), and bi-axial fracture strength was influenced significantly by the kinds of materials (p<0.01). But there was no significant interaction between two variables of the kind and color of materials (p>0.05). 2. Comparing the mechanical properties of the materials, the elastic modulus of Z100 was higher than any other material, and there was no difference in the displacement at fracture among materials. The bi-axial fracture strength of Z100 was significantly higher than any other material, and that of resin-modified glass ionomers was significantly higher than that of conventional glass ionomer (p<0.05). 3. In the same material group, the color of material had little influence on the mechanical properties.

  • PDF

Geochemical Approach to Define the Fracture Bone Affected by the Ubo Fault at the Northern Part of the Hwabuk Dam (화북댐 상류지역을 통과하는 우보단층 파쇄대 영향분석을 위한 지화학적 접근)

  • Kwon Yong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.191-200
    • /
    • 2004
  • The Ubo fault Bone, which cross over the northwestern to southeastern direction at the Hwabuk damsite in Hakseongri, Gunwigun, Gyeongsangbukdo Province, has length about 20km. The Ubo fault zone in this area is segmented to several small faults and makes a gentle slope and hill along the right side of the drainage in the Hwabuk dam. In the storage area of Hwabuk dam, 2 pairs of faults occur and the width of fracture zones are about 2m. To define the fracture Bone using the geochemical data, the samples were collected at 0.5m, 1m, 2m, 4m, 8m, 16m and 32m apart from the center of the main fracture Bone toward north and south, respectively, and analyzed for major elements and mineral content Approaching the fracture Bone, Fe$_2$O$_3$, MgO, K$_2$O, quartz, muscovite and chlorite are increasing and Na$_2$O, CaO, plagioclase and biotite are decreasing, respectively. Based on the rock chemistry and mineral content, the range of the main fracture zone affected by the Ubo fault at Hakseongri is 2m width in total, the secondary deformed zone is 8m width in total. Finally the maximum affected range by the Ubo fault is inferred to 16m width in total.