• Title/Summary/Keyword: crop modelling

Search Result 29, Processing Time 0.022 seconds

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

Modelling the Effects of Temperature and Photoperiod on Phenology and Leaf Appearance in Chrysanthemum (온도와 일장에 따른 국화의 식물계절과 출엽 예측 모델 개발)

  • Seo, Beom-Seok;Pak, Ha-Seung;Lee, Kyu-Jong;Choi, Doug-Hwan;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.253-263
    • /
    • 2016
  • Chrysanthemum production would benefit from crop growth simulations, which would support decision-making in crop management. Chrysanthemum is a typical short day plant of which floral initiation and development is sensitive to photoperiod. We developed a model to predict phenological development and leaf appearance of chrysanthemum (cv. Baekseon) using daylength (including civil twilight period), air temperature, and management options like light interruption and ethylene treatment as predictor variables. Chrysanthemum development stage (DVS) was divided into juvenile (DVS=1.0), juvenile to budding (DVS=1.33), and budding to flowering (DVS=2.0) phases for which different strategies and variables were used to predict the development toward the end of each phenophase. The juvenile phase was assumed to be completed at a certain leaf number which was estimated as 15.5 and increased by ethylene application to the mother plant before cutting and the transplanted plant after cutting. After juvenile phase, development rate (DVR) before budding and flowering were calculated from temperature and day length response functions, and budding and flowering were completed when the integrated DVR reached 1.33 and 2.0, respectively. In addition the model assumed that leaf appearance terminates just before budding. This model predicted budding date, flowering date, and leaf appearance with acceptable accuracy and precision not only for the calibration data set but also for the validation data set which are independent of the calibration data set.

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections (기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측)

  • Kim, Kwang-Hyung;Cho, Jeapil;Lee, Yong-Hwan
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

Transpiration Modelling and Verification in Greenhouse Tomato (온실재배 토마토의 증산모델 개발 및 검증)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1997
  • An accurate transpiration model for greenhouse tomato crop, which is liable to transpiration depression and yield loss because of low solar radiation and high humidity, could be an efficient tool for the optimum control of greenhouse climate and for the optimization of Irrigation scheduling. The purpose of this study was to develop transpiration model of greenhouse tomato and to carry out the experimental verification. The formulas to calculate the canopy transpiration and temperature simultaneously were derived from the energy balance of canopy. Transpiration and microclimate variables such as net radiation, solar radiation, humidity, canopy and air temperature, etc. were simultaneously measured to estimate parameters of model equations and to verify the suggested model. Leaf boundary layer resistance was calculated as a function of Nusselt number and stomatal diffusive resistance was parameterized by solar radiation and leaf-air vapor pressure deficit. The equation for stomatal diffusive resistance could explain more than 80% of its variation and the calculated stomatal diffusive resistance showed good agreements with the measured values in situations independent of which the constants of the equation were estimated. The canopy net radiation calculated by Stanghellini's model with slight modification agreed well with the measured values. The present transpiration model, into which afore-mentioned component equations were assembled, was found to predict the canopy temperature, instantaneous and daily transpiration with considerable accuracy in greenhouse climates.

  • PDF

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

Yield and Nutritional Quality of Several Non-heading Chinese Cabbage (Brassica rapa var. chinensis) Cultivars with Different Growing Period and Its Modelling

  • Kalisz, Andrzej;Kostrzewa, Joanna;Sekara, Agnieszka;Grabowska, Aneta;Cebula, Stanislaw
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.650-656
    • /
    • 2012
  • The aims of the experiment, conducted over three years in the Central Europe field conditions, were (1) to investigate the effect of growing period (plantings in the middle and at the end of August: $1^{st}$ and $2^{nd}$ term, respectively) on yield and chemical composition of the non-heading Chinese cabbage (Brassica rapa var. chinensis) cultivars 'Taisai', 'Pak Choy White', and 'Green Fortune', and (2) to develop regression models to evaluate the changes in crop yields as a function of weather conditions. A highest marketable yield was obtained from 'Taisai' (65.71 and 77.20 $t{\cdot}ha^{-1}$), especially in the $2^{nd}$ term of production. Low yield, observed for 'Pak Choy White' was due to its premature bolting. Almost 39% ($1^{st}$ term) and 70% ($2^{nd}$ term) of plants of this cultivar formed inflorescence shoots before harvest. The highest dry matter level was observed in the leaf petioles of 'Taisai', while 'Green Fortune' was the most abundant of carotenoids and L-ascorbic acid. The content of soluble sugars was the lowest for 'Pak Choy White'. In a phase of harvest maturity, more of the analyzed constituents were gathered by plants from earlier plantings, and differences were as follows: 4.7% (dry matter), 26.3% (carotenoids) and 22.1% (L-ascorbic acid), in comparison to $2^{nd}$ term of production. Significant increase of soluble sugars level was observed for plants from later harvest. The regression model for marketable yield of Chinese cabbage cultivar 'Taisai' as a function of maximum air temperature can predict the yield with accuracy 68%. The models for yield or bolting of 'Pak Choy White', based on extreme air temperatures and sunshine duration, were more precise (98%). It should be pointed out that Taisai could be recommended for later growing period in Central Europe conditions with regard to maximum yield potential. 'Green Fortune' was notable for its uniform yielding. To obtained plants of higher nutritional value, earlier time of cultivation should be suggested. Described models can be successfully applied for an approximate simulation of Chinese cabbage yielding.

Evolution of Agrometeorology at the Global Level (농업기상학의 역사)

  • Sivakumar, M.V.K.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.127-139
    • /
    • 2004
  • Agricultural meteorology has advanced during the last 100 years from a descriptive to a quantitative science using physical and biological principles. The agricultural community is becoming more aware that using climate and weather information will improve their profitability and this will no doubt increase the demand for agrometeorological services. Hence it is timely that the needs and perspectives for agrometeorology in the 21$^{21}$ Century are grouped under two major headings: agrometeorological services for agricultural production and agrometeorological support systems for such services. Emphasis must be placed on the components of such support systems comprising of data, research, policies and training/education/extension. As Monteith (2000) mentioned, food supplies ultimately depend upon the skill with which farmers ran exploit the potential of good weather and minimize the impact of bad weather. Recent developments in instrumentation, data management systems, climate prediction, crop modelling, dissemination of agrometeorological information etc., provide agrometeorologists the tools necessary help the farmers improve such skills. The future for operational applications of agricultural meteorology appears bright and such applications could contribute substantially to promote sustainable agriculture and alleviate poverty.

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.