• Title/Summary/Keyword: critical plane

Search Result 496, Processing Time 0.04 seconds

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

Elasto-plastic behaviour of perforated steel plates subjected to compression and bending

  • Maiorana, Emanuele;Pellegrino, Carlo;Modena, Claudio
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.131-147
    • /
    • 2011
  • The aim of this work is to provide some insights into the elasto-plastic behaviour of plate girder web square and rectangular panels with centred and eccentric holes under both compression and in-plane bending moment. The numerical study was validated comparing the numerical results obtained for one simple steel plate configuration with the corresponding experimental results, obtained at the University of Padova, observing the influence of the initial out-of-plane imperfections on the force vs. displacement relationship and ultimate strength. Once validated the numerical approach, the effect of bending moment on the stability of the plate is studied and some differences with respect to the uniform compression load case are shown. The influence of dimension and position of the hole, the plate aspect ratio and the steel grade on elasto-plastic behaviour is observed. Some indications regarding the critical slenderness (at which transition from elastic to plastic collapse occurs) are given for square and rectangular plates with symmetric and eccentric holes having small, medium and large diameter.

Fabrication and Characterization of Step-Edge Josephson Junctions on R-plane Al$_2O_3$ Substrates (R-면 사파이어 기판 위에 제작된 계단형 모서리 조셉슨 접합의 특성)

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.147-151
    • /
    • 1999
  • YBCO step-edge Josephson junction were fabricated on sapphire substrates. The steps were formed on R-plane sapphire substrates by using Ar ion milling with PR masks. The step angle was controlled in the wide range from 25$^{\circ}$ to 50$^{\circ}$ by adjusting both the Ar ion incident angle and the photoresist mask rotation angle relative to the incident Ar ion beam. CeO$_2$ buffer layer and in-situ YBa$_2Cu_3O_{7-{\delta}}$ (YBCO) thin films was deposited on the stepped R-plane sapphire substrates by pulsed laser deposition method. The YBCO film thickness was varied to obtain the ratio of film thickness to step height in the range from 0.5 to 1. The step edge junction exhibited RSJ-like behaviors with I$_cR_n$ product of 100 ${\sim}$ 300 ${\mu}$V, critical current density of 10$^3$ ${\sim}$ 10$^5$ A/ cm$^2$ at 77 K.

  • PDF

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

An Analytical Solution for Voltage Stability Studies Incorporating Wind Power

  • Lin, Yu-Zhang;Shi, Li-Bao;Yao, Liang-Zhong;Ni, Yi-Xin;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.865-876
    • /
    • 2015
  • Voltage stability is one of the most critical security issues which has not yet been well resolved to date. In this paper, an analytical method called PQ plane analysis with consideration of the reactive power capability of wind turbine generator and the wake effect of wind farm is proposed for voltage stability study. Two voltage stability indices based on the proposed PQ plane analysis method incorporating the uncertainties of load-increasing direction and wind generation are designed and implemented. Cases studies are conducted to investigate the impacts of wind power incorporation with different control modes. Simulation results demonstrate that the constant voltage control based on reactive power capability significantly enhances voltage stability in comparison of the conventional constant power factor control. Some meaningful conclusions are obtained.

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Case Study on Failure of Rock Slope Caused by Filling Material Formed along the Bedding Plane of Sedimentary Rock (퇴적암의 층리면을 따라 형성된 충전물에 의한 암반사면 붕괴사례)

  • Kim, Yong-Jun;Lee, Young-Huy;Lee, Jong-Sung;Kim, Wu-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.256-267
    • /
    • 2006
  • After heavy rainfall, It was occurred massive plane failure along bedding plane of shale in the center of rock slope. It was observed filling material and trace of underground water leakage around of the slope. We tried to find the cause for slope failure, and the result of examination showed that primary factors of the failure were low shear strength of clay filling material and water pressure farmed within tension crack existed in the top of the slope. In this research, in order to examine the features of shear strength of filled rock joint, shear test of filled rock joint was conducted using of artificial filling material such as sand and clay. Also we made an investigation into the characteristics of shear strength with different thickness of filling materials.

  • PDF

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.