• 제목/요약/키워드: critical perspective

검색결과 672건 처리시간 0.017초

키워드검색광고 포트폴리오 구성을 위한 통계적 최적화 모델에 대한 실증분석 (An Empirical Study on Statistical Optimization Model for the Portfolio Construction of Sponsored Search Advertising(SSA))

  • 양홍규;홍준석;김우주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.167-194
    • /
    • 2019
  • 본 논문은 키워드검색광고와 관련하여 의사결정자인 광고주의 입장에서 분석한 통계모델 기반 검색엔진최적화(Search Engine Optimization)논문이다. 일반적으로 키워드입찰은 노출순위를 대상으로 하는 입찰가액에 의해 이루어지고 있다. 그런데, 대부분 광고주는 수천 개 이상의 많은 키워드를 관리함에 있어, 매시간적으로 바뀌는 키워드별 입찰가액을 통해 입찰광고시스템을 관리하고 있는데, 사실상 시간과 인력자원측면에서 비효율적이다. 따라서, 본 논문에서는 기존의 입찰가액을 중심으로 하는 입찰시스템에 대해 의문점을 제기하고, 새로운 관점에서 노출순위를 의사결정변수로 하는 새로운 검색광고모델을 재정의하여 제시하였다. 새로운 검색광고모델에 대한 최적화실증분석을 위해 예측모델과 최적화모델을 제시하였다. 연구과정은 우선 키워드의 특성에 따라 키워드그룹을 원천 제조브랜드 유통브랜드의 범주화기준을 제시한 후, PC 와 모바일 매체별로 대표 키워드 선정한 후 노출순위와 클릭률이 비선형분포임을 보였고, 통계적 관계를 검토하였다. 클릭률예측 및 입찰가액예측을 위한 통계적 시나리오를 제시하였고, 적합성 분석을 통해 최적의 예측모델을 선정한 후, 선정된 예측모델을 기반으로 하여 클릭률과 기대이익(전환율)에 관한 최적화목적함수를 정의하고 실증분석을 진행하였다. 분석결과, 본 논문에서 제시한 검색광고모델은 클릭률 기반의 클릭수와 전환율 기반의 기대이익으로 표현되는 최적화모델 모두에서 개선효과가 있음을 확인하였다. 다만, 기대이익 최적화모델의 경우에는 핵심키워드임에도 불구하고 기대이익이 낮아 광고에서 배제되는 문제를 있음을 확인하고 대안을 제시했다. 마코브체인분석을 통해 핵심 경유키워드 개념을 도입하였고, 최적화목적함수에 대해 핵심경유키워드의 기회이익을 반영한 최적화수정모델을 제시하여 적용가능성을 확인하였다. 본 논문은 키워드입찰시스템의 의사결정변수를 노출순위의 관점으로 전환하는 새로운 모델을 제안하였고, 키워드 범주별 및 노출순위 기반의 통계적 예측을 제시하고, 포트폴리오 구성에서의 최적화실증분석을 통해 노출순위 기반 예측모델의 유효성을 확인함과 동시에, 키워드간의 확산효과를 포함하는 수정모델제시 등 전략적인 입찰을 제안한 점에 시사점이 있다.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.