• 제목/요약/키워드: critical impact point

검색결과 101건 처리시간 0.028초

SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구 (Study on Critical Impact Point for a SB2 Class Flexible Barrier)

  • 허연희;김용국;고만기;김기동
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Risk Critical Point (RCP): A Quantifying Safety-Based Method Developed to Screen Construction Safety Risks

  • Soltanmohammadi, Mehdi;Saberi, Morteza;Yoon, Jin Hee;Soltanmohammadi, Khatereh;Pazhoheshfar, Peiman
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.221-235
    • /
    • 2015
  • Risk assessment is an important phase of risk management. It is the stage in which risk is measured thoroughly to achieve effective management. Some factors such as probability and impact of risk have been used in the literature related to construction projects. Because in high-rise projects safety issues are paramount, this study has tried to develop a quantifying technique that takes into account three factors: probability, impact and Safety Performance Index (SPI) where the SPI is defined as the capability of an appropriate response to reduce or limit the effect of an event after its occurrence with regard to safety pertaining to a project. Regarding risk-related literatures which cover an uncertain subject, the proposed method developed in this research is based on a fuzzy logic approach. This approach entails a questionnaire in which the subjectivity and vagueness of responses is dealt with by using triangular fuzzy numbers instead of linguistic terms. This method returns a Risk Critical Point (RCP) on a zoning chart that places risks under categories: critical, critical-probability, critical-impact, and non-critical. The high-rise project in the execution phase has been taken as a case study to confirm the applicability of the proposed method. The monitoring results showed that the RCP method has the inherent ability to be extended to subsequent applications in the phases of risk response and control.

CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성 (Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature)

  • 조영재;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성 (The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures)

  • 조영재;김영남;양인영
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.

고속 충격을 받는 취성재 평판의 관통파괴 강도 (A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact)

  • 김지훈;심재기;양인영
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Reflecting Critical Pedagogy: Its Application to EFL Contexts and Criticism

  • Jeon, Ji-Hyun
    • 영어어문교육
    • /
    • 제15권3호
    • /
    • pp.59-81
    • /
    • 2009
  • The primary goal of this paper was to develop a critical point of view to critical pedagogy when applied to EFL contexts. Critical pedagogy is more concerned about how language can affect personal and social change of teachers and students than it is with how to teach language effectively or in ways that encourage critical thinking on the part of teacher and students. For this goal, this paper introduces the definition, emergence and major constructs of critical pedagogy in a broad way at first. Then, this paper presents how critical pedagogy has an impact on ELT, focusing on how critical pedagogy is applied in ELT contexts and why the application of critical pedagogy in EFL can be criticized, through the review of empirical studies. Reflection of Korean English teaching situation and applicational difficulties of critical pedagogy in Korean ELT are followed.

  • PDF

충격하중을 받는 CFRP 적층판의 충격손상과 굽힘 잔류강도 직교 이방성 적층판의 충격손상과 파과메카니즘 (Impact Damge and Residual Bending Strength of CFRP Composite Laminates Subjected to Impact Loading Fracture Mechanism and Impact Damage of Orthotropy Laminated Plates)

  • 심재기;양인영;오택열
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2752-2761
    • /
    • 1993
  • The purpose of this study is to confirm the decreasing problems of residual bending strength, and the fracture machanism experimentally when CFRP composite laminates are subjected to Foreign Object Damage. Composite laminates used for this experiment are CFRP orthotropy laminated plates, which have two-interfaces [O/sub 6//sup o//90/sub 6//sup o/]sub sym/ and four-interfaces [O/sub 3//sup o//90/sub 6//sup o//O/sub 3//sup o]/sub sym/. When the specimen is subjected to transverse impact by a steel ball, the delamination area generated by impact damage is observed by using SAM(Scanning Acoustic Microscope). also, Thefracture surfaces obtained by three-point bending test were observed by using SEM (Scanning Electron Microscope). Then, fracture mechanism was investigated based on the observed delamination area and fracture surface. The results were summarized as follows; (1) It is found that for the specimen with more interface, the critical delamination energy is increased while delamination-development energy is decreased. (2) Residual bending strength of specimen A is greater than that of Specimen B within the impact range of impact energy 1. 65J (impacted-side compression) and 1. 45J (impacted-side tension). On the other hand, when the impact energy is beyond the above ranges, residual bending strength of specimen A is smaller than that of specimen B. (3) In specimen A and B, residual strength of CFRP plates subjected to impact damage is lower in the impacted-side compression than in the impacted-side tension. (4) In the case of impacted-side compression, fracture is propagated from the transverse crack generat-ed near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-B delamination in the case of impacted-side tension.

동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력- (The Impact Loads on the Hitch Point of the Tiller-Trailer System)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성 (Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method)

  • 박명균;이중원;김태옥
    • 한국가스학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2008
  • 샤피충격시험은 동적하중 하에 있는 고분자 재료의 거동을 이해하는데 가장 널리 사용되고 있는 방법이다. 본 연구에서는 샤피충격시험장치에서 얻어지는 파단에너지를 사용하여 나일론 소재 샤피 시편의 노치각도에 따른 에너지 해방율을 구하는 방법을 제시하였다. 또한 샤피충격시험장치를 계장화하여 최대 하중과 파단 시까지 소요되는 에너지 등의 파손인자들을 산출하였다. 그리고 노치각도에 따른 동적파괴 인성치와 유한요소법을 사용하여 중앙집중 하중 하에서 사피 시편의 노치각도에 따른 응력분포를 산출하였다.

  • PDF