• Title/Summary/Keyword: critical flux

Search Result 596, Processing Time 0.027 seconds

Experimental Investigation on Flow Boiling of R-22 in a Alumium Extruded Tube (알루미늄 다채널 압출관 내 R-22 대류 비등에 관한 실험 연구)

  • Sim, Yong-Sup;Min, Chang-Keun;Lee, Eung-Ryul;Sin, Tae-Ryong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1340-1345
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$ . The test range covered mass flux from 200 to 600 $kg/m^2s$, heat flux from 5 to 15 $kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$ . The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.

  • PDF

Flow Boiling Heat Transfer of R-22 in a Flat Extruded Aluminum Multi-Port Tube

  • Kim Nae-Hyun;Sim Yang-Sup;Min Chang-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^{2}s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C\;to\;15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations un-derpredict the low mass flux and overpredict the high mass flux data.

The Characteristics of Current Distribution and Electrical Insulation on High-Tc Superconducting Cable (고온 초전도 케이블의 전류 분포 및 전기절연 특성)

  • ;;;;Takataro Hamajima
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.271-277
    • /
    • 2003
  • It is important to control layer current distributions of coaxial multi-layer HTS cables, because a homogeneous layer current distribution decreases AC loss and can supply the largest operational current. We have extended the theory that treat the operational current more than the critical current by considering V-I nonlinear characteristics of HTS tapes including flux flow resistance and contacting resistance between the cable and terminals. It is important to investigate the current distribution under the condition of operational current more than the critical current of cable, because the cable has experiences of fault current. In order to verify the extended theory, we have fabricated a two layers cable with the same twisting layer pitch. It was observed that almost all the operational current less than the critical current flowed on the outer layer because of its lower inductance. In case of operational current more than critical currents of layers, the flux flow resistances affect strongly current waveform and thereby the currents of layers were determined by the flux flow resistances. And we investigated breakdown characteristics in $LN_{2}$/paper composite insulation system for the application to a HTS cable. In this experiment, we got some information out of that the electrical characteristics of the insulation materials depends on the condition of butt gap.

The Button effect of CANFLEX Bundle on the Critical Heat Flux and Critical Channel Power

  • Park, Joohwan;Jisu Jun;Hochun Suk;G.R. Dimmick;D.E. Bullock;W. Inch
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.528-533
    • /
    • 1997
  • A CANFLEX(CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5㎜) to reduce maximum element power rating and buttons to enhance the critical heat flux(CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant H-l34a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power(CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF's for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only lot high pressure conditions. It indicates that the button is a useful design lot CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions.

  • PDF

Study on Heat Transfer and Fouling of Flow Boiling Systems using Oxidized Graphene Nanofluid (유동 비등 시스템에서 산화 그래핀 나노유체의 열전달 및 파울링에 대한 연구)

  • Kim, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The nanofluids are the fluids with excellent thermal property, it is expected as a working fluid of the next generation. The nanofluids are well known that if it is used in the boiling heat transfer system, the critical heat flux is enhanced up to 200%, and the thermal conductivity is increased up to from 10 to 160%. However, the fouling phenomenon can be occurred that nanoparticles of nanofluids are deposited on the heat transfer surface. Therefore, to investigate relation between nanofluid and fouling, this study is carried out using oxidized graphene nanofluid. Also it compared and analyzed the critical heat flux and the boiling heat transfer coefficient. As the result, in case of oxidized graphene deposition for fouling, the critical heat flux is increased up to 20% more than oxdized graphene nanofluid. However, the boiling heat transfer coefficient is decreased down to about $6kW/m^2K$ at $1,000kW/m^2$ more than pure water.

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H.;Park, J.S.;Lee, Y.P.;Prokhorov, V.G.
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

A Study on the Spray Cooling Characteristics of hot Flat Plates (고온평판의 분무냉각특성에 관한 연구)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

The Critical Flux in Microfiltration: Comparison between Theoretical and Experimental Values (정밀여과에서 임계플럭스(Critical flux)에 관한 이론 및 실험적 고찰)

  • 윤성훈;이정학
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.150-156
    • /
    • 1997
  • The particle back transport velocity from the membrane surface were evaluated to determine the critical flux. Four kinds of back transport mechanisms were considered, i.e. back diffusion, shear induced migration, lateral migration, and interaction enhanced migration. The interaction enhanced migration caused by electrostatic repulsion between particles and membrane surface was found to be the most important mechanism of particle back transport for the charged particles of 0.1 ~10${\mu}{\textrm}{m}$ diameter with 20 to 40 mV of zeta potential. Hematite particles with different sizes were synthesized with ferric chloride (FeCl$_3$) and hydrochloric acid (HCl) at high temperature, and subsequently experimental critical fluxes for each sized particle were obtained. The experimental results were well coincident with the calculated critical fluxes based on back transport mechanisms.

  • PDF