• Title/Summary/Keyword: critical design parameter

Search Result 225, Processing Time 0.034 seconds

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

The Reliable Controller Design for Magnetic Auto-Pipe Cutting Machine (자석식 자동 파이프 절단기를 위한 신뢰성 있는 제어기 개발)

  • 김국환;이명철;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1019-1022
    • /
    • 2002
  • Pipe-cutting machines have been used in many fields. Recently, an automatic pipe-cutting machine that uses magnet has born developed. In this paper, a magnetic-type automatic pipe-cutting machine that attaches itself and performs unmanned cutting process is proposed. It is designed that there is a room at the bottom of its body to contain a magnet. And it uses magnetic force between the magnet and the pipe surface to prevent slip and to attach the machine to the pipe against gravity. Also the magnetic force is adjustable by changing the gap between the magnet and the pipe. This machine is, however, necessary to control cutting velocity for the elevation of work efficiency and the adjustable faculties. During pipe cutting process, the gravity acting on the pipe-cutting machine widely varies. That is, the cutting machine gets fast when moving from the top to the bottom of the pipe and slow when moving from the bottom to the top. Actually the system is kind of a non-linear system where the gravity is function of climbing angle of the cutting machine along the pipe. Especially jerking motion is critical. Therefore, authors design the non-linear controller that estimates the current position of the machine along the pipe and compensates the effect of gravity in this paper. It receives the feed back signal from the encoder.

  • PDF

Classification Performance Analysis of Silicon Wafer Micro-Cracks Based on SVM (SVM 기반 실리콘 웨이퍼 마이크로크랙의 분류성능 분석)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.715-721
    • /
    • 2016
  • In this paper, the classification rate of micro-cracks in silicon wafers was improved using a SVM. In case I, we investigated how feature data of micro-cracks and SVM parameters affect a classification rate. As a result, weighting vector and bias did not affect the classification rate, which was improved in case of high cost and sigmoid kernel function. Case II was performed using a more high quality image than that in case I. It was identified that learning data and input data had a large effect on the classification rate. Finally, images from cases I and II and another illumination system were used in case III. In spite of different condition images, good classification rates was achieved. Critical points for micro-crack classification improvement are SVM parameters, kernel function, clustered feature data, and experimental conditions. In the future, excellent results could be obtained through SVM parameter tuning and clustered feature data.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Time Evolution of Material Parameters in Durability Design of Marin Concrete (해양콘크리트의 내구성 설계를 위한 재료 매개변수의 시간단계별 해석)

  • Yoon, In-Seok;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1077-1080
    • /
    • 2008
  • Material parameters such as surface chloride content, water permeability coefficient, chloride diffusivity and critical chloride content are a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Over the past few decades, a considerable number of studies on the durability design for marine concrete structures have been carried out. However, the results are different to each other. In order to establish a consistent durability design system of concrete, it is a precondition to define material parameters, which affect deterioration of concrete due to chloride penetration. Such parameters are surface chloride content, chloride diffusivity, and critical chloride content. Usually these parameters are assumed as temporary constant values or obtained from the experimental results for short term. However, it is necessary to define these parameters reasonably, because these significantly influence the calculation of service life of concrete. In this paper, it is introduced to define material parameters of concrete for chloride diffusion, such as surface chloride content $[Cl]_s$, water permeability coefficient K, chloride diffusivity $D_{Cl}$, critical chloride content $[Cl]_{cr}$. These are expressed as time function considering hydration evolution of hardened cement paste. The definition of the material parameters is a prerequisite to simulate chloride penetration into concrete as time elapsed.

  • PDF

Design of Downlink Beamforming Transmitter in OFDMA/ TDD system (OFDMA/TDD 시스템의 하향링크 빔형성 송신기 설계)

  • Park Hyeong-Sook;Park Youn-Ok;Kim Cheol-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.493-500
    • /
    • 2006
  • This paper presents the efficient structure and parameter optimization of downlink beamforming transmitter in OFDMA/TDD system. To design downlink beamforming transmitter for multiple transmit antennas, an efficient beamforming structure for multiple users and the choice of word-length of each block are critical in the aspect of its performance and hardware complexity. We propose an efficient beamforming scheme, which stores the weights of subcarriers into memory without user identification at the receiver of base station and calculates the weights for corresponding user in a subcarrier unit of IFFT input at high speed. Also, we obtain the word-length of main data path and other design parameters by fixed-point simulation analysis. The proposed architecture could reduce the memory size proportional to the maximum number of users per frame, and the processing time of an OFDM symbol at the receiver of base station without the need of additional processing time for calculating the weights at the transmitter.

The Maximin Robust Design for the Uncertainty of Parameters of Michaelis-Menten Model (Michaelis-Menten 모형의 모수의 불확실성에 대한 Maximin 타입의 강건 실험)

  • Kim, Youngil;Jang, Dae-Heung;Yi, Seongbaek
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1269-1278
    • /
    • 2014
  • Despite the D-optimality criterion becomes very popular in designing an experiment for nonlinear models because of theoretical foundations it provides, it is very critical that the criterion depends on the unknown parameters of the nonlinear model. But some nonlinear models turned out to be partially nonlinear in sense that the optimal design depends on the subset of parameters only. It was a strong belief that the maximin approach to find a robust design to protect against the uncertainty of parameters is not guaranteed to be successful in nonlinear models. But the maximin approach could be a success for the partial nonlinear model, because often the optimal design depends on only one unknown value of parameter, easier to handle than the full parameters. We deal with maximin approach for Michaelis-Menten model with respect to D- and $D_s$-optimality.

Delamination behaviors of GdBCO CC tapes under different transverse loading conditions

  • Gorospe, Alking B.;Bautista, Zhierwinjay M.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with delamination problem of multi-layered CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal cycling. The CC tape might also experience cyclic loading due to the energizing scheme (on - off) during operation. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in REBCO CC tapes becomes critical. In this study, transverse tensile tests were conducted under different loading conditions using different size of upper anvils on the GdBCO CC tapes. The mechanical and electromechanical delamination strength behaviors of the CC tapes under transverse tensile loading were examined and a two-parameter Weibull distribution analysis was conducted in statistical aspects. As a result, the CC tape showed similar range of mechanical delamination strength regardless of cross-head speed adopted. On the other hand, cyclic loading might have affected the CC tape in both upper anvil sizes adopted.

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

Improved design for mooring line with lumped weight at seabed (중량체 적용을 통한 계류선의 설계개선 방안 연구)

  • Song, JaeHa;Shin, SeungHo;Jung, DongHo;Kim, HyeonJu
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.22-26
    • /
    • 2013
  • The purpose of this study was to improve the design of a mooring line by attaching a lumped mass to it on the seabed. A numerical analysis of the redesigned mooring system is performed to analyze the effect of the weight of the attached lumped mass using the commercial software Orcaflex. The ultimate tension of the mooring system with the lumped mass is compared with that of a bare mooring line in the original design. An appropriately designed weight for the lumped mass is found to induce a critical lifted point in the mooring line by floater motion in the ultimate condition to move toward the floater position from the anchor point, while maintaining a similar safety factor for the mooring line. On the other hand, it is shown that excess weight for the lumped mass induces snapping in a mooring line, resulting in low safety factor for the mooring system. The distance between lumped weights is shown to be a minor parameter affecting the safety of a mooring line, although a shorter line has an advantage from an economic point of view. Using the optimal weight for the lumped mass attached to the mooring line on a seabed reduces the mooring line length and installation area occupied by a mooring system under real sea conditions.