• Title/Summary/Keyword: critical current density voltage fluctuation

Search Result 3, Processing Time 0.015 seconds

Electrical Characteristics of $Nb/Al-AlO_x/Nb$ Tunnel Junction fabricated with $I_c$ Values in the Range of $28 A/cm^2~ 940 A/cm^2$ ($28 A/cm^2~ 940 A/cm^2$의 임계전류밀도 범위로 제작된 $Nb/Al-AlO_x/Nb$ 터널접합의 전기적 특성)

  • 홍현권;김규태;박세일;김구현;남두우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.4-7
    • /
    • 2002
  • Samples of $Nb/Al-AlO_x/Nb$ tunnel junction with the size of $50 ${\mu}{\textrm}{m}$ {\times} 50 ${\mu}{\textrm}{m}$$ were fabricated by using self-aligning and reactive ion etching technique In the high quality samples, the $V_m$ value (the product of the critical current and subgap resistance measured at 2 mV) was 34 mV at the critical current density of $J_c: 500 A/cm^2 and the V_g$ value (the gap voltage) was 2.8 mV. For the higher $J_c$ sample, voltage fluctuation at the gap voltage was observed. The $V_m and J_c$ values for this sample were 8 mV and 900 A/cm$^2$, respectively. Also, the relationship between critical current density $J_c$ and specific normal conductance $G_s$ of the junctions with $J_c$ in the range of 28 A/cm$^2$~940 A/cm$^2$was investigated.

Voltage Fluctuation of a Nb/Al-Al$O_{x}$/Nb Tunnel Junction Observed at the Gap Voltage (갭전압에서 나타난 Nb/Al-Al$O_{x}$/Nb 터널 접합의 전압 요동 현상)

  • 홍현권;김규태;박세일;김구현;남두우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.123-126
    • /
    • 2002
  • Samples of Nb/Al-Al$O_{x}$/Nb tunnel junction with the size of 50$\mu$m $\times$ 50$\mu$m were fabricated by employing self-aligning and reactive ion etching technique. In the samples with high-quality, $V_{m}$ value (the product of the critical current and subgap resistance measured at 2 mV) was 34 mV at the critical current density $J_{c}$ = 500 A/$cm^{2}$ and $V_{g}$ value (the gap voltage) was 2.8 mV. In the higher $J_{c}$, voltage fluctuation in the current rising at the gap voltage was observed. The $V_{m}$ and $J_{c}$ value were 8 mV and 900 A/$cm^{2}$, respectively.

  • PDF

A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II) (Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF