• Title/Summary/Keyword: creeping bentgrass

Search Result 174, Processing Time 0.018 seconds

Studies on the Ecology of Occurrence and Identification of Typhula Snow Mold of Graminous Plants -II. Several Factors Affecting Growth of Typhula incarnata- (화본과식물에 발생하는 설부소입균핵병균(雪腐小粒菌核病菌)의 동정 및 발생상태에 관한 연구 -II. Typhula incarnata의 생육에 미치는 몇 가지 요인-)

  • Kim, Jin-Won;Lee, Du-Hyung;Shim, Gyu-Yul
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Typhula incarnata grew over a temperature range of -5 to $20^{\circ}C$ with maximum growth at 10 to $15^{\circ}C$. Sclerotial production for T. incarnata was greatest at the higher temperature. Maximum mycelial growth of this pathogen occurred from pH 5.4 to 6.2. When carbon sources were added to a basal salt medium (Czapek's dox agar) at 5 g carbon sources/l, inulin, soluble starch, galactose, glucose, mannose, manitol, sucrose, maltose, cellobirose, trehalose, raffinose, and dextrin supported growth better than other carbon sources did. Of the twenty-three nitrogen sources tested, glycine, serine, ammonium sulfate, asparagine, asparatic acid, and ${\beta}-alanine$ were the most favorable for mycelial growth of T. incarnata. Cystine and cysteine were poor nitrogen sources. Ammonium salt of nitrogen sources supported growth better than nitrate salt of nitrogen sources. Potato dextrose agar, oat meal agar, and V-8 juice agar were the most favorable for mycelial growth and sclerotial formation. Appropriate addition of pepton to PDA decreased mycelial dry weight, but sucrose supported good growth of T. incarnata. Percent viable sclerotia of T. incarnate buried in bentgrass soil decreased from 2 months after treatment remarkably. Trichoderma riride and bacteria were isolated from non-germinated sclerotia. Live orchard grass leaf pieces within the soil were colonized by T. incarnata better than sterile and unsterile dead leaf pieces at $0^{\circ}C$. Saprophytic ability of T. incarnate on sterile leaf sheath occurred better at $0^{\circ}C$ than at $10^{\circ}C$. Saprophytic microflora consisting of Cladosporium sp., Fusarium sp., Mucor sp., Pythium sp., and unidentified fungi were the competitors for the sterilized and unsterilized substrate, but their colonization was not find on live leaf sheath buried in the soil at $0^{\circ}C$. In the effect of fungicides to Typhula snow mold disease of creeping bentgrass, mixture of polyoxin and thiram was the most effective, followed by iprodione, mixture of iprodione and oxine copper, thiophanate-methyl, myclobutanil, and tolclofos-methyl.

  • PDF

Studies on Photosynthetic and Respiratory Characteristics in Warm Season and Cool Season Turfgrasses (한지형(寒地型) 잔디와 난지형(暖地型) 잔디의 광합성(光合成) 및 호흡특성(呼吸特性))

  • Nan, Xuan Song;Kaneko, Seiji;Ishii, Ryuichi
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.166-174
    • /
    • 1995
  • This experiment was conducted to investigate a cause of summer depression of cool season turfgrass, using nine cultivars in warm season and twenty-eight cool season turfgrasses. Even though an average of apparent photosynthesis(APS) per fresh weight was 13.09 mg $CO_2$/g/h in warm season turfgrass and 7.75 mg $CO_2$/g/h in cool season turfgrass, the Creeping bentgrass in cool season type was higher than Kikuyugrass and Bahiagrass in warm season type. The optimum temperature for the heighest APS was $30^{\circ}C$ in warm season type and $25^{\circ}C$ in cool season type. In $CO_2$ compensation point(CCP) as an index of dark respiration, it was higher in cool season turfgrass(75.6ppm) than warm season turfgrass(29.5ppm). In warm season type, even though the temperature increased from $25^{\circ}C$ to $40^{\circ}C$ the CCP was not increased. But the higher temperature rises the more increased CCP in cool season type. Dark respiration(DR) was higher in cool season type than warm season type under various temperature conditions, but the increasing ratio of DR with the temperature increment was not so much differed between two types.

  • PDF

Genetic and Physiological Discrepancies from Isolates of Sclerotinia homoeocarpa causing Zoysiagrass Dollar Spot Disease (한국잔디에 발생하는 동전마름병 원인균의 유전 및 생리적 특성차이)

  • Park, Dae-Sup;Kim, Kyung-Duck;Kihl, Joon-Yeong;Pyee, Jae-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • Scz1, an isolate of Sclerotinia homoeocarpa, was recently reported as a novel pathogen responsible for dollar spot disease in Zoysiagrass, a warm season turfgrass. Scz1 possessed different characteristics on mycelial pigment, mycelial affinity and host pathogenecity compared to those of Scb1, a typical isolate, obtained from creeping bentgrass, a cool season turfgrass. In this study, only three isolates, Scz1, Scz2(another analogous isolate of Sclerotinia homoeocarpa from zoysiagrass), and Scb1, were examined at the molecular level using the internal transcribed spacer(ITS) and random amplified polymorphic DNA(RAPD) assays to verify their identification and genetic variation. As a result of ITS assay, partial ITS sequences of three isolates showed 94-97% similarity with a standardized ITS sequence of S. homoeocarpa registered on BLAST. In the analysis of RAPD, range value through similarity matrix was 0.167 between Scz1 and Scb1, 0.139 between Scz2 and Scb1, and 0.713 between Scz1 and Scz2, respectively. Furthermore, tendegram analysis indicated that Scz1 and Scz2, unlike Scb1, were clustered together as accompanying a high genetic similarity. In in vitro fungicide bioassay, $EC_{50}$ value representing the sensitivity degree to propiconazole, a well-known fungicide for dollar spot disease, was 0.012 ${\mu}g/ml$ for Sczl, 0.003 ${\mu}g/ml$ for Scz2, and 0.030 ${\mu}g/ml$ for Scb1. From all data taken, we concluded that both Scz1 and Scz2 belonged to one group of S. homoeocarpa, since they exhibit the same host range and high level of genetic similarity, whereas their chemical competences to a fungicide were different. This study would provide further approach for assessing genetic diversity of S. homoeocarpa isolates as well as characterizing individual isolate against chemical exposure.

The Effect of Creeping Bentgrass Growth on Greenspeed (그린잔디의 생육이 그린스피드에 미치는 영향)

  • Kwon, Il-Woo;Lee, Dong-Hee;Choi, Byuong-Man;Tae, Hyun-Sook;Shin, Dong-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • This research was performed to investigate change of green speed according to growth of grass, for this, the method of effective green management for improvement of green speed was searched by investigating green density, soil moisture, surface hardness, and mowing height every day for 6 months. As the result of the study, reliability between, green density, soil moisture, surface hardness, mowing height and green speed were measured to be respectively 0.4742, 0.5690, 0.4632, 0.2806, i.e. soil moisture is considered as the factor which affects green speed the most. Therefore, it will be an advantageous environment to maintain soil moisture a little bit low to improve green speed within the range that does not disrupt the growth of green. In case of green density, it is considered to be effective to get a fast green speed when obtaining enough density during May~June, the most vigorous growth period and at the same time green up period. Surface hardness was confirmed that management work as rolling is a considerably effective method to increase hardness. However, rolling gives high stress to the green, combining another management work as regular hilling could be a good alternative. Reliability of green preview and green speed was 0.2806, lower than soil moisture or surface hardness. Through the results, it was confirmed that management of mowing height to be low less than 3.00 mm is helpful to improve green speed, timely, and it is advantageous to manage green speed when adjusting mowing height during the vigorous growth period of bent grass. However, considering the range of mowing height was not various, being 2.9~3.4 mm, henceforth research on investigation of green speed at more various mowing heights would be necessary. Consequently, except mowing height, other three factors, i.e. green density, soil moisture and surface hardness were investigated to have considerable level of reliability on green speed, and it is considered that each factor affects green speed respectively according to green condition and time. Accordingly, in order for the manager to maintain high speed all year round, intensive care for each factor per time unit considering green growth condition is considered to be necessary.