• Title/Summary/Keyword: creep of concrete

Search Result 451, Processing Time 0.021 seconds

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

Evaluation of Foundation Settlement of Gyungbu High Speed Concrete Track Under Construction (건설 중인 경부고속철도 콘크리트궤도 기초침하 평가)

  • Kim, Dae-Sang;Yoo, Chung-Hyun;Kim, Hwan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.365-370
    • /
    • 2007
  • Foundation settlements(settlements at the embankment surface and ground) has been evaluating to satisfy the strict allowable residual settlement level from the start of the construction of Gyungbu high speed railway. This is because both embankment and ground settlement could be important to minimize the residual settlement after the construction of concrete track. Ground settlement is caused by the increase of effective stress resulting from embankment. The causes of embankment settlement could be come from different sources, for example, the increase of effective stress, rainfall, creep behaviors. Based on the field measured data, this paper analysed the settlement of ground and embankment settlement. The biggest settlement at the embankment surface was 9.7mm during 246days at the STA 000k922.5. The calculated settlement of embankment itself was 8.6mm at the same places. These results conclude that the compressive settlement of embankment could not negligible.

  • PDF

Time-dependent analysis of launched bridges

  • Mapelli, M.;Mola, F.;Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.741-764
    • /
    • 2006
  • The time-dependent analysis of prestressed concrete bridges built adopting the incremental launching technique is presented. After summarizing the well known results derived from the elastic analysis, the problem is approached in the visco-elastic domain taking into account the effects consequent to the complex load history affecting the structure. In particular, the effects produced by prestressing applied both in the launching phase and after it and by application of imposed displacements and of delayed restraints during the launching phases are carefully investigated through a refined analytical procedure. The reliability of the proposed algorithm is tested by means of comparisons with reference cases for which exact solutions are known. A case study of general interest is then discussed in detail. This case study demonstrates that a purely elastic approach represents a too crude approximation, which is unable to describe the specific character of the problem.

Properties of Thermal Expansion Strain of Light Weight Aggregate Concrete with Loading Conditions (하중조건에 따른 경량골재 콘크리트의 열팽창변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Tae-Gyu;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.255-256
    • /
    • 2012
  • In this study, strain properties of high strength concrete using light weight aggregate which is widely used in recent years are evaluated. For these purpose, thermal strain, transient creep were measured in prestressed condition as 0, 20, 40% of specimen strength at target temperature with 60MPa specimens which was using normal and light weight aggregate. As a result, light weight aggregate is more advantageous for the control of strain than normal aggregate because of its low thermal expansion.

  • PDF

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Structural Behavior of Approach Bridge in the Incheon Bridge due to Pre-Jacking Force (선보정하중도입에 따른 인천대교 접속교 거동특성)

  • Song, Jong-Young;Song, Chang-Hee;Shim, Ih-Soo;Kim, Yeong-Seon;Shin, Hyun-Yang;Yoon, Man-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.534-537
    • /
    • 2006
  • The jacking of cantilever before key segment closure has been introduced to offset the long term forces caused by creep and shrinkage. In this paper, the behavior of structural system with the jacking force in approach bridge of Incheon Bridge was reviewed. The introduction of jacking force effectively offset the long term horizontal forces and allows economic substructure member design.

  • PDF

Prediction and Compensation of Differential Column Shortening in 52 story Amatapura Apartment Building (52층 아마타푸라 아파트의 기둥 부등축소량 예측 및 보정에 관한 연구)

  • 조석희;송진규;정하선;이상순;이태규;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.397-402
    • /
    • 1998
  • The objectives of this paper are to estimate differential column Shortening and to determine appropreate compensation amount in 52 story Amatapura Apartment in Indonesia. for this, a computer program based on PCA and CEB-FIP code is developed. The results show that Elastic and Creep strain are the main factors of column shortening and the maximum differential shortening is appeared near the middle of the building height. The results between field survey and estimation have some difference, the most influential factor of the difference can be lateral restraints provided by horizontal members, which cannot be handled in this developed program. Hence introducing the modification factors from various field survey, this program can be used properly in design and construction procedures.

  • PDF

Analysis of Concrete Frame Structures Considering the Construction Sequences (시공단계를 고려한 콘크리트 프레임 구조물의 해석)

  • 곽효경;서영재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.171-184
    • /
    • 1999
  • 이 논문은 시공단계를 고려한 콘크리트 프레임 구조물의 거동 해석을 다루고 있다. 고층건물의 경우 하루에 시공이 완료되지 않으므로 각 시공단계에 따라 콘크리트의 시간의존적 현상은 다르게 발생된다. 이를 위하여 이 논문에서는 일반적인 프레임 해석기법에 콘크리트의 시간의존적 특성을 고려하였다. 이 연구에 도입된 해석기법은 단면을 가상의 층으로 나누고 각층은 일축상태로 가정한 적층단면을 사용하였다. 요소는 평면 보요소를 사용하였으며 강성행렬은 변위법을 바탕으로 유도하였고 전체적인 구조해석은 비선형 구조해석 방법의 하나인 복합법을 사용하였다. 콘크리트의 시간의존적 특성을 고려하기 위하여 단면의 각 층에서 크리프와 건조수축에 의한 변형률을 계산하였으며 크리프는 크리프 Compliance의 전개에 기본을 둔 1차 순환적 단계 알고리즘을 사용하였다. 끝으로 이 연구에서 제안된 해석모델을 이용하여 프레임해석 및 기둥축소에 관한 예제를 해석하였다.

  • PDF

An Experimental Study on the Creep Behavior and Crack Resistance of Hwang-toh Concrete Mixed with Recycled-PET Fiber (재생 PET 섬유가 혼입된 황토 콘크리트의 크리프 거동과 균열저항성에 관한 실험적 연구)

  • Kim, Sung-Bae;Jay Kim, Jang-Ho;Han, Byung-Goo;Hong, Geon-Ho;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2009
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement used is suggested as one of the solutions for eco-friendly concrete. To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang-toh, which is broadly deposited in Korea is a well known environment friendly material and the activated hwang-toh, which has the property of pozzolan reaction, is alternatively used as a mineral admixture of concrete. The purpose of this study is to investigate the drying shrinkage of hwang-toh concrete mixed with recycled PET fiber. Therefore, drying shrinkage experiments are performed to analyze mechanical property of hwang-toh concrete mixed with recycled PET fiber. Test results showed that the drying shrinkage is controlled by hwang-toh admixture and PET fiber.

New constitutive models for non linear analysis of high strength fibrous reinforced concrete slabs

  • Yaseen, Ahmed Asaad;Abdul-Razzak, Ayad A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.121-131
    • /
    • 2022
  • The main goal of this study is to prepare a program for analyzing High Strength Steel Fibrous Reinforced Concrete (HSSFRC) slabs and predict the response and strength of the slab instead of preparing a prototype and testing it in the laboratory. For this purpose, new equations are proposed to represent the material properties of High Strength Steel Fibrous Reinforced Concrete. The proposed equations obtained from performing regression analysis on many experimental results using statistical programs. The finite element method is adopted for non-linear analysis of the slabs. The eight-node "Serendipity element" (3 DoF) is chosen to represent the concrete. The layered approach is adopted for concrete elements and the steel reinforcement is represented by a smeared layer. The compression properties of the concrete are modeled by a work hardening plasticity approach and the yield condition is determined depending on the first two stress invariants. A tensile strength criterion is adopted in order to estimate the cracks propagation. many experimental results for testing slabs are compared with the numerical results of the present study and a good agreement is achieved regarding load-deflection curves and crack pattern. The response of the load deflection curve is slightly stiff at the beginning because the creep effect is not considered in this study and for assuming perfect bond between the steel reinforcement and the concrete, however, a great agreement is achieved between the ultimate load from the present study and experimental results. For the models of the tension stiffening and cracked shear modulus, the value of Bg and Bt (Where Bg and Bt are the curvature factor for the cracked shear modulus and tension stiffening models respectively) equal to 0.005 give good results compared with experimental result.