• Title/Summary/Keyword: created wetlands

Search Result 55, Processing Time 0.029 seconds

Assessing Organic Matter and Organic Carbon Contents in Soils of Created Mitigation Wetlands in Virginia

  • Ahn, Changwoo;Jones, Stacy
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Several soil properties were studied from three young created mitigation wetlands (<10 years old), which were hydrologically comparable in the Piedmont region of Virginia. The properties included soil organic matter (SOM), soil organic carbon (SOC), pH, gravimetric soil moisture, and bulk density ($D_b$). No significant differences were found in the soil properties between the wetlands, except SOM and SOC. SOM and SOC indicated a slight increase with wetland age; the increase was more evident with SOC. Only about a half of SOC variability found in the wetlands was explained by SOM ($R^2$ = 0.499, p < 0.05). The majority of the ratios of SOM to SOC for these silt-loam soils ranged from 2.0 to 3.5, which was higher than the 1.724 Van Bemmelen factor, commonly applied for the conversion of SOM into SOC in estimating the carbon storage or accumulation capacity of wetlands. The results may caution the use of the conversion factor, which may lead to an overestimation of carbon sequestration potentials of newly created wetlands. SOC, but not SOM, was also correlated to $D_b$, which indicates soil compaction typical of most created wetlands that might limit vegetation growth and biomass production, eventually affecting carbon accumulation in the created wetlands.

Effects of habitat conditions in created wetlands on sustaining wintering waterfowl in riverine plains, Nakdong River, South Korea

  • Choi, Jong-Yun;Jang, Ji-Deok;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • The landscape setting of a habitat strongly influences the distribution, abundance, and species composition of waterfowl. Thus, habitat assessment is very important to understand the habitat characteristics that sustain waterfowl assemblages. In this study, we hypothesized that the excessive use of artificial materials when new wetlands are constructed negatively influences wintering waterfowl. To test this hypothesis, we measured environmental factors, assessed habitat, and investigated waterfowl at 13 artificial wetlands in the Nakdong River Basin. There were greater numbers of waterfowl species and individuals in artificial wetlands with high habitat assessment scores. In contrast, environmental factors did not affect waterfowl distribution. In particular, features of natural habitats, such as macrophytes and sandbars, and the surrounding land-use patterns were important factors for sustaining waterfowl assemblages in each created wetland. Our results show that promoting naturalness in wetlands and surrounding areas would increase the species diversity and abundance of waterfowl. Further, complex habitats, such as wetlands and some terrestrial habitats, support both aquatic and terrestrial species because mixed habitats feature a larger array of food sources than more limited habitats do.

Plant community development in the first growing season of a created mitigation wetland bank as influenced by design elements

  • Ahn, Chang-Woo
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.363-376
    • /
    • 2010
  • Vegetative communities of created wetlands often display lower species richness, less cover, higher occurrence of non-native or invasive species, and fewer obligate wetlands species than those in natural wetlands, thus failing to meet basic success criteria for wetland mitigation. This study examined the effects of two design elements, disking-induced microtopography and hydrologic regime, on the first year vegetation development pattern of a mitigation wetland newly created in the Virginia piedmont. Elevation and species cover were measured along replicate multiscale circular transects in two adjacent wetland sites that are different in their hydrologic regime. Two microtopographic indices, tortuosity (T) and limiting elevation difference (LD), were calculated from the elevation measurements. Both indices were higher in disked plots than non-disked plots, showing the effect of disking on microtopography. Out of forty-one vegetation taxa observed in the wetland, 29 taxa were naturally colonized and 12 taxa were seeded. All plots except one non-disked plot were dominated by wetland vegetation. Species richness and diversity were higher in disked than in non-disked plots. Vegetation community development seemed also influenced significantly by hydrologic regime of the site. The effect of microtopography on species richness and diversity was more pronounced in a relatively dry site compared to a wet site. In addition, percent cover, species richness and diversity of vegetation were positively correlated with microtopographic indices such as T and LD. Two design elements, microtopography and hydrologic regime, should be considered and incorporated in wetland creation to enhance plant community development.

The Status and Characteristics of Wetlands Created from within Abandoned Rice Paddy Fields in South Korea (유휴농경지에서 발생되는 습지의 현황 및 특성에 관한 연구)

  • Park, Mi-Young;Yim, Yu-Ra;Kim, Kwi-Gon;Joo, Young-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.1-15
    • /
    • 2006
  • As the imports of foreign agricultural products are liberalized and the consumption of agricultural products declines, abandoned rice paddy fields continues to rise. However, such abandoned rice paddy fields has not been precisely surveyed yet. In this backdrop, a necessity to develop technology to utilize such abandoned rice paddy fields has emerged. Utilization of abandoned rice paddy fields as wetlands may be a good example. This study aimed to survey the current status and characteristics of wetlands created within abandoned rice paddy fields by selecting abandoned rice paddy fields throughout the nation and conducting field surveys on the sites that had transformed into wetlands. The abandoned rice paddy fields almost transformed into wetland and the types of wetlands transformed from abandoned rice paddy fields were mainly Inland/Moutain/Depression/Abandoned rice paddy fields/Marsh/Phragmites communis community and Inland/Moutain/Depression/Abandoned rice paddy fields/Swamp/Salix koreensis community. Abandoned rice paddy fields that had transformed into wetlands was depending heavily on waterways for water supply than other reservoirs and lakes do. Abandoned rice paddy fields transformed into wetlands was most observed in mountainous area. Abandoned rice paddy fields are because agricultural land is no longer profitable due to international and social changes and is not cultivated as government policy. Wetland period and dimension originated from abandoned rice paddy fields are very various and its surrounding land its mostly forest and the next largest follow roads and rural community. The abandoned rice paddy fields transformed into wetlands is mostly deserted currently. Despite their value as wetlands, no restoration and utilization efforts are made in Korea today. Therefore, it is imperative to conduct a precise current status survey on these areas and introduce management and restoration plans at the government level in the case of important habitats.

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

The Status and Features of the DMZ Forested Wetlands Fauna - Focusing on the Kyongui Line in Paju - (DMZ 산림습지의 식생 현황과 특성에 관한 연구 - 파주 경의선 지역을 중심으로 -)

  • Park, Mi-Young;Cho, Dong-Gil;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.5
    • /
    • pp.28-38
    • /
    • 2005
  • The De-militarized Zone(DMZ) on the Korean Peninsula is ecologically conserved and naturally developed as access to the area has been controlled in the past five decades. As a result, biodiversity and wetlands are developed very well, but they have not been sufficiently surveyed due to land mines and security reasons. Focusing on the Kyongui Line area in Paju DMZ, this study aims at examining the status of forested wetlands in detail through an on-site survey and understanding the features of forested wetlands in DMZ. The forested wetlands of Paju Kyongui Line area are inhabited by naturally grown Salix koreensis Andress. and Acer ginnale Maxim. and affected by Sacheon Basin region extensively. As the topography of this region is created of inundated area and gentle ground, it is easily affected by hydrology and irrigation and has ideal conditions as forested wetlands. In addition, forest wetlands in this area were used as agricultural land in the past but now transformed into palustrine forested wetlands after being deserted for long time. However, as construction of roads and railways increasingly blocks water paths, the coverage of Robinia pseudoacacia L. and Amorpha fruticosa L. is on the rise, which indicates that forestedwetlands are gradually becoming inland over time.

Successional changes in plant composition over 15 years in a created wetland in South Korea

  • Son, Deokjoo;Lee, Hyohyemi;Cho, Kang-Hyun;Bang, Jeong Hwan;Kwon, Oh-Byung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Backgrounds: The main purpose of this research was to assess changes in vegetation structure, wetland index, and diversity index for a 15-year-old created wetland in Jincheon, South Korea. The created wetland consists of four sub-wetlands: a kidney-shaped wetland, a ditch, an ecological pond, and a square wetland. Vegetation and water depth data were collected at each site in 1999 and 2013, and Shannon diversity and wetland indices were calculated. Results: The total number of plant species increased from 18 in 1999 to 50 in 2013, and the ecological pond in 1999 and the ditch in 2013 presented the highest diversity indices (2.5 and 3.2, respectively). Plant species were less diverse in 1999 than in 2013, presumably because these initial wetlands were managed periodically for water purification and installation of test beds. The proportion of wetland plants, including obligate wetland and facultative wetland species, decreased from 83 to 56%, whereas upland plants, including obligate upland and facultative upland species, increased from 17 to 44%. After ceasing water supply, water depth in all four sub-wetlands declined in 2013. Thus, upland plants established more readily at these sites, resulting in higher diversity and lower wetland indices than in 1999. Conclusions: The major floristic differences between 1999 and 2013 were an increase in the number of upland plants and a decrease in wetland species. Although wetland indices were lower in 2013, the created wetland performed important ecosystem functions by providing habitats for wetland and upland plants, and the overall species diversity was high.

Wetland Type Classification and Functional Assessment of an Abandoned Rice Paddy Ja-un Wetland (묵논에 형성된 자운늪의 유형분류 및 기능 평가)

  • Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2003
  • This research aims to classify wetland types and evaluate functions of a wetland created by abandoned rice paddies. The case study area is Ja-un wetland in Daejeon Metropolitan City. In this study, wetland types were classified based on the basic elements of wetlands such as hydrology, vegetation, and soil conditions. This study was carried out based upon field surveys, drawing maps and publication, and modified-RAM which can evaluate the general functions and conservation values of wetlands. The analysis shows that several types of wetlands were identified, such as Palustrine/ Perennial/ Hydrophytes, Palustrine/ Perennial/ Openwater, Palustrine/ Seasonal/Herbal, Palustrine/ Seasonal/ Shrub and Scrub, Palustrine/ Seasonal/ Hydrophye, and Riparian/ Seasonal/ Shrub and Scrub in the Ja-un wetland. The average level of functions of the wetlands is very "HIGH", and it is recommended that prompt conservation measures should be taken.

Influences of Water Level and Vegetation Presence on Spatial Distribution of DOC and Nitrate in Wetland Sediments (수심의 정도와 식생의 유무에 따른 인공습지 토양 내 유기탄소와 질산염의 공간적 분포)

  • Seo, Ju-Young;Song, Keun-Yea;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • Wetlands are a well known ecosystem which have high spatial-temporal heterogeneity of chemical characteristics. This high heterogeneity induces diverse biogeochemical processes, such as aerobic decomposition, denitrification, and plant productivity in wetlands. Understanding the dynamics of dissolved organic carbon (DOC) and inorganic nitrogen in wetlands is important because DOC and inorganic nitrogen are main factors controlling biological processes in wetlands. In this study, we assessed spatial distribution of DOC and inorganic nitrogen with relation to the different hydrology and vegetation in created wetlands. Both DOC and nitrate contents were significantly higher in vegetated areas than open areas. Different water levels also affected DOC contents and their quality. Average DOC contents were $0.37mg{\cdot}g^{-1}$ in deep riparian (DR) and $0.31mg{\cdot}g^{-1}$ in shallow riparian (SR). These results appeared to be related to the interaction between carbon supply by vegetation and microbial decomposition. On the other hand, inorganic nitrogen contents were not affected by water level differences. This result indicates that presence/absence of vegetation could be a more important factor than hydrology in the spatial dynamics of inorganic nitrogen. In conclusion, we observed that vegetation and hydrology differences induced spatial distribution of carbon and nitrogen which are directly related to biogeochemical processes in wetlands.

A Study on the Benefit Estimation by Artificial Wetland Construction (인공습지 조성에 따른 편익 산정에 관한 연구)

  • Jung, Jaewon;Bae, Younghye;Lee, Ha Neul;Kim, Soojun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • The main function of artificial wetlands and the largest proportion of the purpose of artificial wetlands created is water purification. The public's interest and demand for water quality increased after the Four major rivers project, and the need for water quality improvement is expected to increase further as the use of waterfront increased due to the improvement of quality of life. Most of the projects focus on only one purpose, and research on the effects of one function is also being analyzed, which undervalues the actual creation of artificial wetlands. Therefore, in order to calculate the comprehensive benefits of artificial wetlands, the effects of flood reduction and water quality improvement were analyzed in this study among the various effects of artificial wetlands along riversides, and the benefits were calculated accordingly. In other words, the effects of flood mitigation and water quality improvement were calculated by comparing the artificial wetlands before and after the construction of artificial wetlands, and the benefits of each of them were calculated.