• Title/Summary/Keyword: crater wear

Search Result 37, Processing Time 0.02 seconds

Crater Wear Volume Calculation and Analysis (크레이터 마모의 체적계산 및 분석법)

  • Jeong, Jin-Seok;Cho, Hee-Geun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The worn crater wear geometry of coated tools after machining has been configured by using Confocal Laser Scanning Microscopy(CLSM) and the Wavelet-based filtering technique. The CLSM can be well suited to construct the three-dimensional crater wear on the rake surfaces of coated tips. However, The raw heightness data of HEI(height encoded image) acquired by CLSM must be filtered due to the electronic and imaging noise occurring in constructing the crater image. So the Wavelet-based filtering algorithm is necessary to denoise the shape features in a micro scales so as to realize accurate crater wear topography analysis. The crater wear patterns filtered enable us to predict the crater wear shape in order to study the tool wear evolution. The study shows that the technique by combining the CLSM and Wavelet-based filtering is an excellent one to obtain the geometries of worn tool rake surfaces over a wide range of surface resolution in a micro scale.

  • PDF

A Study on the Development of Measurement Setup for Crater Wear by Diffraction Grating in Turning (선삭에서 회절격자를 이용한 크레이터마모 측정장치 개발에 관한 연구)

  • Kim, Yeong-Il;Kim, Se-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-95
    • /
    • 1992
  • There is the high interest for sensing of tool wear with the aim of controlling machine tools productivity from the point of view of qualitity. Difficulties in this measurement are also known. This study is on the development of measurement setup for crater wear by CCD image inturning. In this study, the crater wear measurement system consists of the He-Ne gas laser, diffraction grating. CCD camera, noise filter, slit, microcomputer, diverging lens, converging lens and so on. He-Ne laser beam passes through a diverging lens and a diffraction grating is positioned properly. A converging lens focuses so that the interference fringes can be obtained on the crater wear. Performance test revealed that the developed image technique provides precise, absolute tool-wear quantification and reduces human measurement errors. The results obtained are as follows 1. The digitizing of one image requires less than 2ses. 2. It can give detailed information on crater wear with limited times and errors 3. All parameters required by specification are easily obtained for several points of the cutting edge.

  • PDF

The Automated Measurement of Tool Wear using Computer Vision (컴퓨터 비젼에 의한 공구마모의 자동계측)

  • Song, Jun-Yeop;Lee, Jae-Jong;Park, Hwa-Yeong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.69-79
    • /
    • 1989
  • Cutting tool life monitoring is a critical element needed for designing unmanned machining systems. This paper describes a tool wear measurement system using computer vision which repeatedly measures flank and crater wear of a single point cutting tool. This direct tool wear measurement method is based on an interactive procedure utilizing a image processor and multi-vision sensors. A measurement software calcultes 7 parameters to characterize flank and crater wear. Performance test revealed that the computer vision technique provides precise, absolute tool-wear quantification and reduces human maesurement errors.

  • PDF

A Study on the Crater Wear of Carbide Tool in Cutting SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Kang, Won-Suk;Oh, Seok-Hyung;Kim, Jong-Taeg;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.84-95
    • /
    • 1991
  • This paper deals with crater wear when the SUS304 steel which forms the saw- toothed chip was cut by carbide tools. When the saw-toothed chip was formed, and optical creater wear measuring technique was used which provides complete information, both qualitatively and quantitatively, on the crater development. In this optical contour mapping technique an profile projector was used, making it possible to draw the depth contours of the crater directly. 98 contour maps of crater wear representing twelve different cutting conditions were presented. Also, the rake angles changed to have ${\alpha}$ =$6^{\circ}$, ${\alpha}$ =$-6^{\circ}$

  • PDF

The Wear Behavior and Cutting Characteristics of Coated Tools (코팅공구의 마모 및 절삭특성)

  • 정진혁;윤형석;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.3-8
    • /
    • 1996
  • To enhance the cutting performance of the tool, single or multilayer coating is applied on the substrate of the tool. Coating material reduces cutting force and heat generation in tool-chip contact zone and enhances resistance against abrasive wear. This paper presents that the effect of different coatings on abrasive wear resistance varies with work material and the flank wear rate is different with depth of cut. Crater wear rate is also found to decrease with higher thermal diffusivity of coating material. It is verified that the estimated thermal diffusivity of multilayer coating has consistent effect on the crater wear.

  • PDF

Crater Wear Measurement Using Computer Vision and Automatic Focusing (컴퓨터 비젼 및 자동초점장치를 이용한 크레이타 마멸측정)

  • Yang, Min-Yang;Gwon, O-Dal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3759-3766
    • /
    • 1996
  • In this paper a new gefchmique to measaure the creater wear using image processing and automatic focusing is presented. The contour detection algorithm, which can adopt ina noisy image, is suggested. It is suitable for eliminating high frequency noses with lower processing time and without blurring. An automatic focusing technique is applied to measure a createrwear depth with a one-dimensional search algorithm for finding the bestfocus. This method is implemented in the tool microscope driven by a servo motor. The results show that the countour and depth of crater wear can be measured reliably.

Experimental investigation on the wear mechanism of CBN cutting tools (CBM공구의 마모에 관한 실험적 연구)

  • Kwon, O-chul;Lee, Jong-chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.86-97
    • /
    • 1994
  • An experimental investigation is reported on the wear mechanism of CBN cutting tools. The cutting experiments were conducted on a lathe equipped with a tool dynamometer for cutting force measurement. The investigation of wear mechanism was executed by observing the worn tools using tool microscope and scanning electron microscope. Results indicate that the flank wear occurs dominantly by abrasive wear mode and the crater wear by adhesive wear mode. The results also indicate that the width of flank wear is closely related with the passive component of cutting force.

  • PDF

A Study on the Wear of partially coated Pinion Cutter (부분 피복 피니언 공구의 마멸에 관한 연구)

  • 김상균;지용권;김인성;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.74-79
    • /
    • 1996
  • The wear of partially coated pinion cutters under several cutting conditions was studied. In the realm of this experiment, chipping was a dominant tool wear mechanism and flank wear was much larger than crater wear. Under the condition of relatively low rotary feed and low radial feed rate, the wear due to chipping was concentrated at the nose part of pinion cutter. Increasing of rotary feed and radial feed rate alleviated the concentration of chipping at nose and prolonged tool life.

  • PDF

System Development for Automatic Tool Wear Measurement (자종공무마모계측시스템개발)

  • Kim, Y.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.185-199
    • /
    • 1994
  • This study has been performed to present a new automatic tool wear measurement by digital image processing. The purpose of this paper is to develop an automatic tool wear measuring system based on the image processing which can be applied to the quasi-real time measurement of the characteristics of insert tip in turning. Tool wear monitoring is one of the key-problems, for the development of control systems of modern unmanned factory which are not completely solved now. In oredr words at present complete qualitative and quantitative information on tool wear morphology is required, at least on the following aspects : flank wear, its dimensions and distribution on the maximum and mean values on VB pqrqmeter in the various zones of the wearland. crater wear, its main dimensions and values of KT parameters. This research has been performed to this technique made possible by designing a proper lighting system to the worn tool with following features : The flank wear is measured by observing the active cutting part from a proper direction and by lighting the wearland by a diffuser optic system. The crater wear is visualized by lighting the tool by a He-Ne gas laser system developed in this study. By means of this system it is research to evaluate classical parameters of tool wear and to have complete information about tool wear morphology.

  • PDF

Development of Free Machining Gray Cast Iron (쾌삭성 회주철의 개발)

  • Furuya, Satoshi;Ozoe, Nobuaki
    • Journal of Korea Foundry Society
    • /
    • v.42 no.3
    • /
    • pp.191-197
    • /
    • 2022
  • This study aims to improve the machinability of gray cast irons in high speed cutting by using nonmetallic inclusions. In this research, small quantities of AL and Mg were added to conventional gray cast irons without influencing their mechanical characteristics and castability to investigate the effects of these nonmetallic inclusions in the gray cast irons on tool wear in high speed cutting. During the high speed turning of gray cast iron containing Al and Mg using a cermet tool, protective layers consisting of Al, Mg, Si, Mn, S and O were detected on the flank face and rake face of the tool, and flank and crater wear were significantly reduced compared to the turning of conventional gray cast iron and gray cast iron added with Al. The effect of inclusions on tool wear increased with increasing cutting speed, and flank and crater wear was the smallest at the cutting speed of 700m/min. Moreover, in face milling, the addition of Al and Mg drastically decreased the wear rate, and wear hardly progressed even in prolonged cutting length after initial wear. The amount of adhesion on tool faces increased as the cutting speed increased. This increase in cutting speed resulted in the formation of a thick protective layer and the reduction of tool wear. Furthermore, the addition of small amounts of Al and Mg prevented thermal cracks in the face milling of gray cast irons.