• Title/Summary/Keyword: crash beam

Search Result 41, Processing Time 0.029 seconds

Development of Manufacturing Technology for Crash Energy absorption Bumper Stay with Hydroforming (하이드로포밍을 이용한 충돌 에너지 흡수용 범퍼스테이제조기술 개발)

  • Sohn S. M.;Lee M. Y.;Kang B. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.27-31
    • /
    • 2004
  • A bumper comprises a bumper face, a bumper beam for distributing the load from the impacts applied to the bumper face and reinforcing the bumper, an absorber member interposed between the bumper face and the bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

Development of Manufacturing Technology for Crash Box Type Bumper Stay with Hydroforming (하이드로포밍을 이용한 크래쉬박스형 범퍼스테이 제조기술 개발)

  • Sohn S. M.;Lee M. Y.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.38-42
    • /
    • 2005
  • A bumper comprises a bumper cover, a bumper beam for distributing the load from the impacts applied to the bumper cover and reinforcing the bumper, an absorber member interposed between the bumper cover and tile bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

Performance Analysis of Steel-FRP Composite Safety Barrier by Vehicle Crash Simulation (충돌 시뮬레이션을 활용한 강재-FRP 합성 방호울타리의 성능평가)

  • Lee, Min-Chul;Kwon, Ki-Young;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the performance of a steel-FRP composite bridge safety barrier was evaluated through vehicle crash simulation. Surface veil, DB and Roving fibers were used for FRP. The MAT58 material model provided by LS-DYNA software was used to model FRP material. Spot weld option was used for modeling contact between steel and FRP beam. The structural strength performance, the passenger protection performance, and the vehicle behavior after crash were evaluated corresponding to the vehicle crash manual. As the result, A steel-FRP composite safety barrier was satisfied with the required performance.

Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam (알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석)

  • Bang, Seung-Ok;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1552-1558
    • /
    • 2011
  • In this paper, the automotive beam using aluminium foam is designed and the impact analysis is carried out. The analysis model is the beam of actual size with B- type section structure. At the frontal crash of low speed, ANSYS AUTODYN is used by predicting the behavior of deformation and its internal energy. By the use of 7075-T6 aluminum alloy, the weight is reduced as much as 55% than steel. The deformation at the bumper foam of aluminum is similar with that of steel and the impact energy reduction at aluminum is more than steel. The foam filled with aluminum as much as 50 % has more impact energy absorption than the completely filled aluminum foam.

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads (충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF