• 제목/요약/키워드: crankshaft

검색결과 188건 처리시간 0.022초

소형내연기관축계의 비틀림진동댐퍼에 관한 연구 제1보 최적점성.고무탄성댐퍼의 개발 (A Study on the Torsional Vibration Damper of the Small Internal Combustion Engine Driving System(Part I) - Development of the Optimum Viscous-Rubber Damper-)

  • 전효중;김유종;김의간;김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권2호
    • /
    • pp.44-52
    • /
    • 1991
  • The crankshaft system of engine is a complex vibratory object and its vibration modes are consisted of torsional, axial and their coupled vibration. Among them, the torsional vibration causes engine noise as well as serious fatigue faillures of crankshaft. If the troules of noises and crankshaft strength are forecasted by torsional vibration calculation in the design atage of crankshaft, the torsional damper is adopted as the final countermeasure. In this paper, some computer program to calculate crankshaft torsional vibration of engine are developed and with developed programs, an efficient rubber-viscous damper for automobile and with developed programs, an efficient rubber-viscous damper for automobile engine is designed and manufactured, and then it is fitted on the actual automobile engine to confirm its calculated efficiency. By comparing the measured result (with damper and without damper) with the calculated one, the reliability of developed computer programs and the performances of manufactured damper are confirmed.

  • PDF

디젤 엔진의 Crankshaft Web 형상에 따른 굽힘 및 비틀림 특성과 중량 최적화에 관한 연구 (A Study on Bending and Torsion Characteristics and Weight Optimization by Web Shape of Crankshaft for Diesel Engine)

  • 김장수;이치우
    • 한국산업융합학회 논문집
    • /
    • 제14권2호
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, it is possible for small sized and high speed diesel engines by development of commonrail system. And in order to increase the engine performance, the cylinder firing pressure is a tendency which increases. On the other side, the weight of engine becomes lightly in spit of high performance diesel engine. Therefore, the weight optimization for engine components is very important point on the design process. Also, the weight optimization must necessarily be considered the robust design against a fatigue failure. This paper focuses on the weight optimization of crankshaft according to web shape at the light duty diesel engine, and torsion characteristics of crankshaft is considered with 1D and 3D analysis tools.

선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구 (A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine)

  • 강대선;이돈출;김태언;박정대
    • 선박안전
    • /
    • 통권21호
    • /
    • pp.4-14
    • /
    • 2006
  • Marine diesel engine production and refinements sought a continuous increase on mean effective pressure and thermal efficiency. These results in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. As such, crankshaft should be designed and compacted within its fatigue strength. In this paper, the 8H25/33P(3,155ps 900rpm) engine for ship propulsion was selected as a case study, and the strength analysis of its crankshaft is carried out by: simplified method recommended by IACS M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are compared with each other.

  • PDF

자동차 크랭크샤프트 멀티 연삭시스템의 구조해석에 관한 연구 (A Study on the Structural Analysis of Automotive Crankshaft Multi Grinding Machine)

  • 최윤서;이원석;황인환;박휘근;조현택;이영식;김기정;송순태;이종찬
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.20-25
    • /
    • 2012
  • A Crankshaft multi grinding machine is developed for manufacturing of high precision crankshaft. The grinding head part of the developed machine should be moved precisely during grinding of work materials. In this paper, structural and modal analysis for the crankshaft multi grinding machine is carried out to check the design criteria of the machine. The analysis is carried out by FEM simulation using the commercial software. The machine is modeled by placing proper shell and solid finite elements. The results of structural and modal analysis confirmed that the structural characteristics of grinding machine and the structural safety are considered secure.

자동차 크랭크샤프트 멀티 연삭시스템 개발에 관한 연구 (A Study on the Development of Multi Grinding Machine for Automotive Crankshaft)

  • 최윤서;박휘근;황인환;조현택;송순태;최준석;이남두;이종찬
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1147-1151
    • /
    • 2013
  • A Crankshaft Multi Grinding Machine is developed for manufacturing of high precision crankshaft. The grinding head part of the developed machine should be moved precisely during grinding of work materials. In this paper, structural and modal analysis for the crankshaft multi grinding machine is carried out to check the design criteria of the machine.

가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석 (Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

크랭크축의 미세속도변화를 이용한 선박엔진의 착화불량 상태 감시 (Monitoring of Misfiring Status of Ship Engines Using Minute Speed Changes in the Crankshaft)

  • 강호현;안중환;김화영
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.51-56
    • /
    • 2022
  • In this study an efficient method for detecting and monitoring engine misfiring, focusing on minute speed changes in the crankshaft is proposed., Its validity is verified using various misfiring cases. Typically, the crankshaft speed fluctuates around the normal value depending on the engine misfiring status. Even a minute speed change in the crankshaft can be estimated by measuring the rotation time of each tooth of the 118-tooth flywheel attached to the crankshaft with a 2-MHz timer. Therefore, a speed pattern for an in-line six-cylinder engine consists of 236 tooth rotation speeds corresponding to the two rotations of the crankshaft, in which all the cylinders complete four-stroke cycle. FFT analysis can reduce the number of components of a speed pattern from 236 to just four major components: - fundamental frequency_(f), 2f, 3f, 6f., - This makes the comparison of the misfiring cases simpler and faster. In the experiment, five engine status cases (one normal firing and, four misfiring cases) were simulated. While the 6f component was the largest for the normal case, the f component increased as misfiring occurred one, two apart, and two consecutive times. The 3D FFT pattern comprising the ratio of f, 2f, and 3f, 6f showed that the distance between the misfiring and normal states was larger

자동차 엔진 크랭크축의 진동해석을 위한 자유도 저감법 개발에 관한 연구 (A Proposed Reduction Method for Vibatiton Analysis of Automobile Engine Crakshfts)

  • 최명진
    • 한국생산제조학회지
    • /
    • 제5권2호
    • /
    • pp.29-37
    • /
    • 1996
  • High speed engines with high power are increasingly on demands and almost engines employ crankshafts Such problems as bending and torsional vibrations become the point at issue in crankshaft analysis and design. In this study to overcome the diffiiculty with the large amount of computation in finite element vibration analysis of a crankshaft, a reduction method based on influence coefficient and lumped parameter is presented. which reduces the computation amount effectively and can be used in vibrational analysis and design of any types of crankshafts Crank journal and pinparts are meodelled as elements with 6degrees of freedom per node. Crank web part is modelled using equivalent mass and stiffness matices . based up on lumped parameter and influence coefficient respectively to reduce total degrees of freedom considerablely. To confirm the scheme of the study the results are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well The scheme of this study can be utilized in evaluation results agree well. The calculated result are compared with the known data and they are coincident. Also a simple crankshaft is designed and manufactured for experiments. The calculated results using reduction method and the experimental results agree well. The scheme of this study can be utilized in evaluation and development of high speed engine.

  • PDF

선박용 디젤기관 크랭크 축계의 2절 비틀림 진동에 대한 연구 (A Study on the 2-node Torsional Vibration for Marine Diesel Engine Crankshaft)

  • 최문길;박건우
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.54-61
    • /
    • 2008
  • With the development of computer program in calculation for torsional vibration of ship's propulsion shafting it has become possible to calculate all order's vibratory amplitude, vibratory torque, vibratory stress and synthesis value at all concerned revolutions by way of solving the vibratory equation directly. Though this kind of propulsion shafting vibration calculation method makes it possible to get generalized and precise result of calculation, the unexpected critical crankshaft torsional vibration has still appeared in maneuvering range of the engine. A close investigation has been carried out to find out the cause for the 2-node propulsion shafting torsional vibration of the crankshaft that exceeded the limitation value near the MCR 104rpm on the sea trial of the recently delivered 6000TEU class container vessel from HHIC. In conclusion, as the latest super-output engine with heavy crankshaft and propeller mass seems to be liable to 2-node torsional vibration of crankshaft, it is recommend that, in the design stage of propulsion shafting, its torsional vibration condition must be more carefully checked.

  • PDF

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.