• Title/Summary/Keyword: cracking strength

Search Result 1,018, Processing Time 0.03 seconds

Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능)

  • Chung, Soo-Young;Yun, Hyun-Do;Park, Wan-Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Fracture Behaviors of Oxide Scales on the Metallic Substrate and the Influence of Oxide Scales for the Strength of materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;T. Narita
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.187-190
    • /
    • 2003
  • An Fe-25Cr steel was oxidized in Ar at 973K with or without external stesses of 30~35Mpa. A 0.1 ${\mu}{\textrm}{m}$ thick Cr$_2$O$_3$scales was formed during pre-treatment in Ar. Cracking on the oxides scales commenced at the alloy grain boundary by the end of second creep stage, arrayed almost perpendicular to the direction of the tensile directions. On the contrary, a scale formed in $N_2$-0.1%SO$_2$shows poor adherence on the metal substrate. In this case, the strength of materials is much lower than in Ar

  • PDF

Experimental Study on Tension Stiffening Behavior with Variation of Cover Thickness (피복두께에 따른 인장강성 거동에 관한 실험적 연구)

  • Lee, Ki-Yeol;Yum, Hwan-Seok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.641-646
    • /
    • 2000
  • This paper describes an experimental investigation on the influence of concrete cover thickness on tension stiffening behavior. Total 36 direct tension specimens were tested with variation of cover thickness. Three different concrete compressive strengths were also considered. After cracking, as the cover thickness becomes thinner and the concrete strength becomes higher, tensile stiffness is decreased. Thereby an increase in cover thickness results in increase of the tensile cracking load and tension stiffening effect. Also the increase in concrete strength results in sudden decrease in tension stiffening effect. Hence, the cover thickness and concrete strength are proved to be important factors in tension stiffening behavior.

  • PDF

Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting (Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향)

  • Kim, Ki-Tae;Yang, Jae-Hak;Lim, Young-Suk
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites (강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Kim, In-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Steel Fibers Efficiency as Shear Reinforcement in Concrete Beams (섬유보강콘크리트 보의 전단거동에 미치는 강섬유의 효과)

  • 문제길;홍익표
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.118-128
    • /
    • 1994
  • There have been conducted a lot of works on shear behavior of steel fiber reinforced concrete beams. Fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 14 reinforced concrete beams (including 11 containing steel fibers) are reported. Two parameters were varied in the study, namely, the volume fraction of fibers and shear span-to-depth ratio.The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ul~imate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers, The mode of failure changed from shear to flexure when the shear span-to-depth ratio exceeds 3.4. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and expenmentally observed values are shown to verify the proposed theoretical treatment and steel fibers efficiency.

Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II) (해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II))

  • 안석환;임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF