• 제목/요약/키워드: cracking displacement

검색결과 182건 처리시간 0.023초

Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test

  • Feist, C.;Hofstetter, G.
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.49-66
    • /
    • 2007
  • The objective of this paper is to provide experimental data on the propagation of curved crack-surfaces and the respective load-displacement diagrams for the validation of numerical models for cracking of concrete, subjected to three-dimensional stress states. To this end beam-shaped specimens are subjected to combined bending and torsional loading, leading to the formation of a spatially curved crack-surface. The experimental data contain the evolution of the load and of the strains at selected points in terms of the crack mouth opening displacement and the propagation of the crack surface.

석유대체자원을 이용한 항공유제조기술 (Development of Jet-Fuel Using Petroleum Displacement Resources)

  • 정순용;김철웅;정광은;고재천;채호정;김태완;박현주;이상봉;한정식;정병훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.307-310
    • /
    • 2010
  • 석유대체자원을 이용하여 항공유의 제조기술 연구를 수행하고 있는데, 핵심 연구분야인 크게 3분야로 바이오매스, 석탄, 천연가스등으로부터 얻어진 합성가스를 제조하기 위한 전처리 제조분야, 이러한 정제된 합성가스를 사용하여 피셔트롭스(Fischer-Tropsh) 반응단계를 거쳐 탄화수소를 제조하는 단계, 마지막으로 탄화수로부터 항공유에 적합한 upgrading기술인 크래킹(cracking) 및 이성화(isomerization) 반응단계로 구분된다. 본 발표에서는 국내외 연구동향 및 주요단계에 중점기술에 관해 언급하고자 한다.

  • PDF

아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정 (Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement)

  • 이봉림;김낙석
    • 대한토목학회논문집
    • /
    • 제36권6호
    • /
    • pp.1109-1116
    • /
    • 2016
  • 아스팔트 콘크리트 포장의 반사균열 저항성을 평가하기 위해 다양한 방법이 적용되고 있다. 반복직접인장시험은 기존실험에 비해 저렴하고 간편하게 아스팔트 콘크리트 포장의 반사균열 저항성을 평가할 수 있는 장점이 있다. 국내에 반복직접인장시험을 도입하기 위해서는 파괴기준의 결정이 필요하다. 반복직접인장시험의 파괴횟수를 결정하기 위해 다양한 방법을 검토한 결과 초기하중의 10%일 때를 파괴시점으로 산정할 경우 10% 이내의 반복횟수 편차를 나타내었다. 아스팔트 콘크리트의 두께가 30 mm에서 50 mm로 증가할 경우 파괴횟수는 13.6배 증가하여 포장두께가 반사균열 저항성에 큰 영향을 미치는 것을 알 수 있었다. 또한 재하변형의 크기가 클수록 반사균열의 진전속도가 증가하는 것으로 나타났다. 반복직접인장시험은 포장 두께, 변형크기, 재료적 특성에 따라 반사균열저항성을 정량적으로 평가할 수 있기 때문에 포장설계시 반사균열 저항성 평가 방법으로 적용 가능한 것으로 나타났다.

Aggregate Gradation Effects on Cracking-Related Displacements in Concrete Pavement

  • 정지훈;김낙석
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.631-635
    • /
    • 2005
  • Aggregate gradation effects on cracking-related displacements of concrete are investigated in the laboratory using the German cracking frame. Concrete workability was assessed by use of the slump and drop tests for two different concrete mixtures consisting of gap-graded and dense-graded aggregates. Shrinkage strain, cracking frame strain, and concrete strain were measured and used to compare to strength gain and creep development. The measured and calculated strains of the different aggregate gradations were compared each other. Gradation effects on strength and stress development relative to tensile cracking at saw-cut tip were also investigated. Test results revealed that the gap-graded concrete has indicated larger shrinkage and creep strains than dense-grade concrete perhaps because of its higher volume concrete of cement mortars in the mixture.

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith;Subramaniam, Kolluru V.L.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.365-375
    • /
    • 2017
  • An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

스테인레스 강판의 응력부식균열 전파기구에 관한 연구 (A study on the mechanism of stress corrosion cracking of stainless steel)

  • 임우조;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.153-158
    • /
    • 1985
  • The dependence of the corrosion potential on the stress corrosion cracking of 304 austenitic stainless steel was inspected by using the specimen of constant displacement type under the environment of 42% $MgCl_2$ boiled solution. The relationship of the corrosion potential to the intermittent propagation behaviour in stress corrosion cracking was cleared. As the results, a possible model of stress corrosion cracking of 304 austenitic stainless steel in $MgCl_2$ boiled solution was presented on the basis of the Film Rupture Model. This model is specified by the following process. Rupturing of passive film at notch tip .rarw. Dissolution of metal ion and formation of tunnel .rarw. Initiation of microcrack .rarw. Propagation of main crack .rarw. Recreation of passive film at new crack surface.

  • PDF

The Effect of Temperature on Stress Corrosion Cracking of AI Brass under Flow

  • Lim, Uh-Joh;Jeong, Hae-Kyoo
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.135-140
    • /
    • 2003
  • The effect of temperature on stress corrosion cracking o f Al-brass used in vessel heat exchanger tube was studied in 3.5% NaCI + 0.1% $NH_4OH$ solution. The SCC test using a CDT(constant displacement test) and the specimens using a SEN(single edge notched) specimens. For setting the environment similar to working environment of a heat exchanger, the specimens was immersed in solution and solution flow onto the specimens were performed. The results are as follows : The latent time of stress corrosion crack occurrence gets shorter, as the temperature gets higher. Dezincification phase showed around the crack occupy wider range, as the temperature gets higher. Zn composition falls under 4% at the dezincifiction area.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.