• Title/Summary/Keyword: crack tip plastic zone

Search Result 68, Processing Time 0.023 seconds

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Dynamic elastic-plsstic Crack Curving Phenomenon (탄소성 동적 균열전파의 만곡현상)

  • 이억섭;정형진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.704-708
    • /
    • 1996
  • The elastic dynamic crack curving could be obtained by controlling the loading rate, the initial crack-tip blunting to store much energy before crack initiation and the magnitude of reflected wave from finite boundaries. However there is no theoretical and experimental elastic-plastic dynamic curving study. This paper proposes a specimen geometryfor a study of dynamic elastic-plastic crack curving and presents a preliminary result. The specimen has a blunt physical crack tip on a side, and a round notch tip on the other side. From the experiment using this specimen, it is found that the narrow plastic zone ahead of the round notch tip produces the change of load direction and anti-symmetricity of the dynamic isochromatics, and each result causes the crack curving phenomenon. After a certain time, as the elastic-plastic crack gets close to the round notch tip near, the degree of the crack curving get larger. The elastic reack curving propagates more sensitively to the surround of crack tip than the plastic crack curving does. The cynamic elastic-plastic crack curving is found to be proportional to the CTOA(the crack tip opening angle). The dynamic elastic-plastic crack may propagate in the direction perpendicular to the loading. An apparant strip yield zone which is similar to the Dugdale strip yield zone is noted ahead of the physical crack tip.

  • PDF

A Study on the Behaviour of Plastic Deformation in Weld HAZ of Mild Steel (연강 용접열영향부의 소성변형거동에 관한 연구 1)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.38-45
    • /
    • 1989
  • In this study, in order to evaluate the shape and the size of the plastic zone at the notch tip before stable crack growth, a newly developed technique for plastic strain measurement, that is, the recrystallization-etching technique was applied to observe the intense strain zone at the notch tip of weld HAZ. 1) The recrystallized specimens showed that the amount of the intense strain zone, more than 20% plastic zone, was quantitatively observed as the plane strain state during the growth of the plastic zone. 2) The behavior of plastic deformation at midsection are different for parent and weld HAZ. In addition, the micro crack initiation occurs at midsection, parent and weld HAZ when the crack opening displacement(COD) value is .delta.$_{t}$=0.4mm. 3) The plastic zone for parent proceeds in the forward direction at notch tip and for weld HAZ in the right and left direction at the notch tip. 4) The relation between plastic strain energy(Wp) and COD(.delta.$_{t}$) depended on yield stress, gradient and plastic strain size.ize.

  • PDF

An Evaluation on the Effect of Reversed Plastic Zone on the Fatigue Crack Opening Behavior under 2-D Plane Stress (2차원 평면응력 상태에서 되풀이 소성역이 피로균열 열림 현상에 미치는 영향에 관한 연구)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1078-1084
    • /
    • 2005
  • The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the track tip area. The smaller element size than reversed plastic zone size is used fer evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation.

Finite Element Analysis for the Prediction of Fatigue Crack Opening Behavior Using Cyclic Crack Tip Opening Displacement (되풀이 균열 선단 열림 변위를 이용한 피로 균열 열림 거동 예측을 위한 유한 요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1455-1460
    • /
    • 2006
  • The relationship between fatigue crack growth behavior and cyclic crack tip opening displacement is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the growth behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. We investigate the relationship between the reversed plastic zone size and the changes of the cyclic crack tip opening displacement along the crack growth. We investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is related to fatigue crack opening behavior.

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System. (전자스페클 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • Kim, Kyung-Su;Shin, Byung-Chun;Shim, Chun-Sik;Park, Jin-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-144
    • /
    • 2002
  • In this paper, the plastic zone size ahead of the crack tip of DENT specimen and the crack growth length under cyclic loading were measured by ESPI system. These results of the plastic zone size measured by ESPI system were compared with the plastic zone size proposed by Irwin. The results of tile crack growth length measured by it were also compared with them measured by the image analysis system. It is confirmed that it is possible to measure the plastic zone and crack growth length.

  • PDF

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System (전자스패클패턴 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • The magnitude of the plastic zone around the crack tip of DENT(Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI(Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the equations proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment.

A study on the measurement of plastic zone and crack growth length at the crack tip under cyclic loading using ESPI system

  • Kim, Kyung-Su;Kim, Ki-Sung;Shim, Chun-Sik
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.367-378
    • /
    • 2003
  • The magnitude of the plastic zone around the crack tip of DENT (Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI (Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment (ESPI System).

Crack tip plastic zone under Mode I, Mode II and mixed mode (I+II) conditions

  • Ayatollahi, M.R.;Sedighiani, Karo
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.575-598
    • /
    • 2010
  • The shape and size of the plastic zone around the crack tip are analyzed under pure mode I, pure mode II and mixed mode (I+II) loading for small scale yielding and for both plane stress and plane strain conditions. A new analytical formulation is presented to determine the radius of the plastic zone in a non-dimensional form. In particular, the effect of T-stress on the plastic zone around the crack tip is studied. The results of this investigation indicate that the stress field with a T-stress always yields a larger plastic zone than the field without a T-stress. It is found that under predominantly mode I loading, the effect of a negative T-stress on the size of the plastic zone is more dramatic than a positive T-stress. However, when mode II portion of loading is dominating the effect of both positive and negative T-stresses on the size of the plastic zone is almost equal. For validating the analytical results, several finite element analyses were performed. It is shown that the results obtained by the proposed analytical formulation are in very good agreements with those obtained from the finite element analyses.