• 제목/요약/키워드: crack initiation and propagation

검색결과 324건 처리시간 0.027초

고주파유도로를 이용한 초급속열처리 구상흑연주철의 피로파괴특성 (Fatigue Fracture Behavior in Super-Rapid induction Quenched Spheroidal Graphite Cast Iron)

  • 지정근;김진학;김민건
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.25-29
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the fatigue behavior of high performance ductile cast iron experienced super rapid induction heat treatment. The effect of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional quenching heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by the improvement of surface structure. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress. The crack propagation path has shown zigzag pattern in the hardened surface layer.

  • PDF

불규칙하게 분포된 미소결함 사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (1) (An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (I))

  • 송삼홍;배준수;최병호
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1288-1296
    • /
    • 2000
  • In this study, fatigue crack behavior between arbitrarily located defects was investigated by experiment. Especially, stress interaction between micro hole defects and fatigue cracking, and fatigue crack initiation life following the variation of location of micro hole defects were considered. In addition, crack initiation position by micro hole stress interaction and the relationship between stress concentration factor and fatigue initiation life are studied in detail.

Gigacycle Fatigue Crack Initiation in Cr-Mo Prealloy Sintered Steel

  • Xu, Chen;Danninger, Herbert;Khatibi, Golta;Weiss, Brigitte
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.136-137
    • /
    • 2006
  • Crack initiation and short crack propagation was studied on the polished notched surfaces of Cr-Mo prealloy sintered steels with 7.35 $g.cm^{-3}$ sintered density. An ultrasonic resonance test system operating in push-pull mode at 20 kHz and R=-1 was used. It showed that crack initiation took place in several places, small cracks growing oriented to the local pore structure rather than to stress orientation. Their growth rate is markedly higher than the corresponding one of long cracks. Finally, several microcracks join to form a dominant crack.

  • PDF

過大, 過小應力下에서의 疲勞크랙發생 傳播擧動 (II) - 탄소동재의 내부크랙을 중심으로- (Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing(II) - About the Inside Crack of the Caron Steel-)

  • 송삼홍;원시태
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.188-197
    • /
    • 1986
  • 본 연구에서는 응력이 변동되는 경우 내부크랙 전파특성을 중심으로 내부크랙 전파거동을 표면크랙 전파거동과 비교 검토하였다.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동 (Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load)

  • 허용학;박휘립;권일범;김진영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험 (Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft)

  • 이동형;권석진;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향 (The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation)

  • 오세욱;김웅집
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF