• Title/Summary/Keyword: crack deflection

Search Result 383, Processing Time 0.025 seconds

Flexural analysis of transverse joints of prefabricated T-girder bridge superstructure

  • Kye, Seungkyung;Jung, Hyung-Jo;Park, Sun-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Rapid construction of prefabricated bridges requires minimizing the field work of precast members and ensuring structural stability and constructability. In this study, we conducted experimental and analytical investigations of transverse joints of prefabricated T-girder bridge superstructures to verify the flexural performance and serviceability. In addition, we conducted parametric studies to identify the joint parameters. The results showed that both the segmented and continuous specimens satisfied the ultimate flexural strength criterion, and the segmented specimen exhibited unified behavior, with the flexural strength corresponding to that of the continuous specimen. The segmented specimens exhibited elastic behavior under service load conditions, and the maximum crack width satisfied the acceptance criteria. The reliability of the finite element model of the joint was verified, and parametric analysis of the convexity of the joint section and the compressive strength of the filler concrete showed that the minimum deflection and crack width occurred at a specific angle. As the strength of the filler concrete increased, the deflection and crack width decreased. However, we confirmed that the reduction in the crack width was hardly observed above a specific strength. Therefore, a design suitable for prefabricated bridges and accelerated construction can be achieved by improving the joint specifications based on the required criteria.

Serviceability Verification Based on Tension Stiffening Effect in Structural Concrete Members (인장증강효과에 기반한 콘크리트 구조 부재의 사용성능 검증)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2012
  • This paper is about proposal of a calculation method and development of an analytical program for predicting crack width and deflection in structural concrete members. The proposed method numerically calculate stresses in steel rebar using a parabola-rectangle stress-strain curve and a modified tension stiffening factor considering the effect of the cover thickness. Based on the study results, a calculation method to predict crack width and deflection in reinforced concrete flexural members is proposed utilizing effective tension area and idealized tension chord as well as effective moment-curvature relationship considering tension stiffening effect. The calculation method was applied to the test specimens available in literatures. The study results showed that the crack width and deflections predicted by the proposed method were closed to the experimentally measured data compared the current design code provisions.

An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar (아연코팅 철근콘크리트 보의 휨 거동 실험 연구)

  • Yang, In-Hwan;Kim, Kyong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • Coating is one of the methods used to solve the problem of corrosion of reinforcement in concrete structures. There are few research reported in the literature regarding the effect of zinc-coating on flexural behavior compared to epoxy coating. The objective of this study was to determine whether zinc-coated rebar adversely affects flexural behavior. Concrete beams reinforced with black or zinc-coated steel were tested in flexure. The test variables included the presence of rebar surface coating with zinc, steel ratio used and cover depth. The study concentrated on comparing crack pattern, crack width, deflection and strain. The ultimate flexural capacity of beams reinforced with zinc-coated bars was not different from that of black steel reinforced beams. The results from deflection and crack width measurements were indicative of no significant variation for the different rebar surface conditions. In addition, it was found that load-strain curve of beam reinforced with zinc-coated steel was similar to that of beam reinforced with zinc-coated steel. Therefore, the test results indicated that the use of zinc-coated rebar had no adverse effect on flexural behavior compared to the use of black rebar.

Influence of Moving Mass on Dynamic Behavior of Simply Supported Timoshenko Beam with Crack

  • Yoon Han-Ik;Choi Chang-Soo;Son In-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, the effect of open crack on the dynamic behavior of simply supported Timoshenko beam with a moving mass was studied. The influences of the depth and the position of the crack on the beam were studied on the dynamic behavior of the simply supported beam system by numerical methods. The equation of motion is derived by using Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack increases, the mid-span deflection of the Timoshenko beam with a moving mass is increased.

Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass (크랙과 이동질량이 존재하는 티모센코 보의 동특성)

  • Yoon Han Ik;Choi Chang Soo;Son In Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

Influence of stress ratio and microstructural size on fatigue crack growth and crack closure in near-threshold (複合組織鋼의 疲勞균열진전거동과 균열닫힘조건에 미치는 應力比 및 微視組織크기의 영향)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1343-1349
    • /
    • 1988
  • In this study, it is investigated for the effects of stress ratio and grain size on fatigue crack growth behavior and crack closure, in ferrite-martensite dual phase steels. The results obtained are as follows ; .DELTA. $K_{th}$ is independent of the ferrite grain size, but decreases with increasing stress ratio. The relation between .DELTA. $K_{th}$ and stress ratio R is as follows : .DELTA. $K_{th}$ =15.1(1-0.95R). But (.DELTA. $K_{eff}$)$_{th}$ in terms of crack closure is approximately 2.5 MPa.root.m. Also, variation of the degree of crack deflection to crack tip opening displacement at the minimum load is considered as a parameter of crack closure.e.e.

Mixed Mode Crack Propagation using the High Strength Concrete Disk (고강도 콘크리트 디스크를 이용한 혼합모드 균열전파)

  • 진치섭;김희성;박현재;김민철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.733-738
    • /
    • 2000
  • It is difficult to obtain accurate fracture toughness values by RILEM committees proposed three point bend test(TPB) because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, for disk test, fracture toughness is easily obtained from crack initial load. We examined the cracked high strength concrete disk and the experimental results were compared with the results by finite element analysis(FEA). Also we compared experimental fracture locus with theoretical fracture locus.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF