• Title/Summary/Keyword: crack deflection

Search Result 381, Processing Time 0.029 seconds

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Application of curvature of residual operational deflection shape (R-ODS) for multiple-crack detection in structures

  • Asnaashari, Erfan;Sinha, Jyoti K.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.309-322
    • /
    • 2014
  • Detection of fatigue cracks at an early stage of their development is important in structural health monitoring. The breathing of cracks in a structure generates higher harmonic components of the exciting frequency in the frequency spectrum. Previously, the residual operational deflection shape (R-ODS) method was successfully applied to beams with a single crack. The method is based on the ODSs at the exciting frequency and its higher harmonic components which consider both amplitude and phase information of responses to map the deflection pattern of structures. Although the R-ODS method shows the location of a single crack clearly, its identification for the location of multiple cracks in a structure is not always obvious. Therefore, an improvement to the R-ODS method is presented here to make the identification process distinct for the beams with multiple cracks. Numerical and experimental examples are utilised to investigate the effectiveness of the improved method.

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Yoon, Han-Ik;Jin, Jong-Tae;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF

Relationship between Crack Characteristics and Damage State of Strengthened Beam (보강된 보의 균열특성과 손상상태의 상관관계)

  • 한만엽;김상종
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.805-812
    • /
    • 2002
  • The number of old concrete structure which needs to be strengthened has been increased. The repair and strengthening methods have to be determined based on the current status of the structure. Consequently the estimation method for the damage status of the structure has been desperately needed, but no studies have been tried to use the crack and deflection characteristics to estimate the damage status. In this study, the crack characteristics depending on load level were measured and analysed. The crack characteristics observed from 11 samples were compared with damage status, and load level, The crack characteristics examined in this study include crack number, crack length, crack range, crack interval, maximum crack length, crack area, and average crack length. The deflections were normalized based on yield deflection, and the relationship between the relative deflection and the standardized crack characteristics were compared. Among the crack characteristics, crack interval, crack area, crack range, and maximum crack length, have been showed a close relationship to the relative deflection. Therefore, if such crack characteristics are evaluated, the maximum load applied to the structure is believed to be estimated. if additional parameters such as size of specimen, strength of concrete and steel, and steel ratio are studied, the damage status of structure can be estimated more accurately.

Flexural behavior of concrete beams reinforced with CFRP prestressed prisms

  • Liang, J.F.;Yu, Deng;Yu, Bai
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.295-304
    • /
    • 2016
  • An experimental investigation on the behaviour of concrete beams reinforced with various reinforcement, including ordinary steel bars, CFRP bars and CFRP prestressed concrete prisms(PCP). The main variable in the test program was the level of prestress and the cross section of PCP.The modes of failure and the crack width were observed. The results of load-deflection and load-crack width characteristics were discussed. The results showed that the CFRP prestressed concrete prisms as flexural reinforcement of concrete beams could limit deflection and crack width under service load and PCP can overcome the serviceability problems associated with the low elastic modulus/strength ratio of CFRP.

TREPAN SHAPE MODIFICATION OF MOTOR BEARING (모터 베어링의 트레판 형상 수정에 관한 연구)

  • 이경원;반재삼;강형선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.950-953
    • /
    • 2002
  • Trepan prevents wear of an inside part of a bearing when the initial shaft rotates. It continuously contacts with the eccentric part of the shaft in rotation and is loaded repeatedly. Therefore, even if an early crack of a trepan part is small, a crack progresses by a repeated load. If a crack progresses, very small chips come out. This is pill in the rotor and prevents rotation of the compressor. There can be leaks in a microgroove and extreme wear can occur due to lack of oil on the surface contact pan. Therefore, this study was carried out to compare and investigate trepan strength and deflection characteristics between trepan locations and dimension changes using a finite element method and search a motor bearing for a model with bigger stiffness of a trepan part and the same deflection. And then. five different types of the oil groove model were chosen to prevent small crack and considered also machining ability and the analysis was carried out on oil feeding flow.

  • PDF

Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses (크랙과 이동질량을 가진 티모센코 보의 진동특성)

  • 안성진;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF