• Title/Summary/Keyword: crack control

Search Result 724, Processing Time 0.027 seconds

Influence of basalt fibres on the flexural performance of hypo sludge reinforced concrete beams with SBR latex

  • S. Srividhya;R. Vidjeapriya
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.615-624
    • /
    • 2023
  • The focus of this study is on the structural behaviour of reinforced concrete beams in which basalt fiber and SBR latex were added and the cement was partially replaced with 10% of hypo sludge. Eight different mixes of reinforced beam specimens were tested under static loading behaviour. The experiments showed, the structural behaviour with features such as load-deflection relationships, crack pattern, crack propagation, number of crack, crack spacing and moment curvature. A stress-strain relationship to represent the overall behavior of reinforced concrete in tension, which includes the combined effects of cracking and mode of failure along the reinforcement, is proposed. The structural behaviour results of reinforced concrete beams with various types of mix were tested at the age of 28 days. The investigation revealed that the flexural behaviors of hypo sludge reinforced concrete beams with addition of basalt fiber and SBR latex was higher than that of control concrete reinforced beam. The specimen (LHSBFC) with 10% hypo sludge, 0.25% Basalt fiber and 10% SBR latex showed an increase of 5.08% load carrying capacity, 7.6% stiffness, 3.97% ductility, 31.29% energy dissipation when compared to the control concrete beam. The analytical investigation using FEM shows that it was in good agreement with the experimental investigation.

A Basic Study on the Standardization of Epoxy Injection on Concrete Structure Crack (콘크리트 구조물 균열에 에폭시 주입의 표준화를 위한 기초적 연구)

  • Baek, Jong-Myeong;Jang, Seog-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • Repairing concrete structures depended on only technician' experience without quality test standards would have problems. For solving those problems, this paper has analyzed the relations between injection quantify and crack width, injection time and crack width, injection pressure and crack width, injection pressure/time and crack width, injection quantity and structure size, injection quantify and individual crack Position, injection time and crack width/structure thickness. The data gained from this analysis would be helpful for systematic quality control of repairing concrete structures.

Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions (노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구)

  • Park, Seung-Hwan;Cho, Sang-Ho;Kim, Seung-Kon;Kim, Kwang-Yeom;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Crack-controlled blasting method which utilizes notched charge hole has been proposed in order to achieve smooth fracture plane and minimize the excavation damage zone. In this study, the blast models, which have a notched charge hole, were analyzed using dynamic fracture process analysis software to investigate the effect of the geometry of a notched charge hole and decoupling indexes of the charge hole on crack growth control in blasting. As a result, crack extension increased and damage crack decreased with the notch length. Ultimately, stress increment factors and resultant fracture patterns with different notch length and width were analyzed in order to examine the effect factors on the crack growth controlling in rock blasts using a notched charge hole.

Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion (부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측)

  • Cho, Tae-Jun;Cho, Hyo-Nam;Park, Mi-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.543-552
    • /
    • 2006
  • The current design for crack width control in concrete bridges is incomplete in analytical models. As one of the important serviceability limit states, the crack width be considered with the quantitative prediction of the initiation and propagation of corrosion and corrosion-induced cracking. A serviceability limit state of cracking can be affected by the combined effects of bond, slip, cracking, and corrosion of the reinforcing elements. Considering life span of concrete bridges, an improved prediction of crack width affected by time-dependent general corrosion has been proposed for the crack control design. The developed corrosion models and crack width prediction equation can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also be used as the rational criteria for the maintenance of existing concrete bridges and the prediction of remaining life of concrete structures.

A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구)

  • 오병환;이명규;유성원;백상현
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.151-161
    • /
    • 1996
  • Recently, polypropylene fiber reinforced mortar and concrete as civil and architectural materials have been used in major countries in the world. Polypropylene fiber reinforced concrete has many advantages in terms of economical aspect, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. The purpose of the present study is, therefore, to investigate the strength as well as many mechanical characteristics including toughness and shrinkage control properties. A specially devjsed shrinkage test has been applied to measure the crack control characteristics of polypropylene fiber reinforced concrete. The present study indicates that the polypropylene fiber reinforced concrete curbs greatly the crack occurrence due to shrinkage and enhances toughness resistance. The present study provides a firm base for the efficient use of polypropylene fiber reinforced concrete in actual construction such as pavements and slab structures.

Thermal Crack Characteristics of Concrete Walls with Pipe Cooling (파이프 쿨링 공법 적용에 따른 벽체구조물의 온도균열 특성)

  • 박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper reports the performance results of hydration heat control of mass concrete walls with pipe cooling system. The thickness of walls ranged from 0.9 to 2.2m. In order to investigate the effect of pipe cooling on the thermal and thermal crack characteristics, the pipe cooling was conducted for 42 walls, and the investigation of thermal cracks was conducted for 14 walls. Based on the investigation, the pipe cooling method decreased the peak temperature of about 13-2$0^{\circ}C$ and the thermal crack width of about 30% for mass concrete walls.

  • PDF

Improvement of Construction Efficiency of Face Slab Concrete (차수벽 콘크리트 시공성 향상에 관한 연구)

  • 김완영;정우성;임정열;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.289-292
    • /
    • 2003
  • CFRD face slab concrete has a much capability to occur crack due to drying shrinkage and vibrator compaction etc. Because crack of concrete induces structural problem and decrease durability of concrete, it is need to reduce crack of concrete. In the experimental study it was analyzed that the effect of curing of concrete and compaction on CFRD face slab concrete. As a results, it was found that control of construction condition into curing of concrete and compaction improved on construction efficiency of face slab concrete.

  • PDF

( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Properties for Crack Controlling and Watertightness of Concrete added with Crack Reducing Agent for High Strength Concrete (고강도 콘크리트용 균열저감제가 첨가된 콘크리트의 수밀성 및 균열제어 특성)

  • Kim, Do-Su;Khil, Bae-Su;Kang, Yeong-Sik;Kim, Woo-Jae;Choi, Se-Jin;Lee, Seong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.617-620
    • /
    • 2006
  • This study is related to comprehending performance for watertightness and crack control of concrete added with crack reducing agent concerning to high strength concrete mixs. It was confirmed that watertightness of concrete added with agent could be improved by evaluation absorption ratio, permeability ratio and pore size distribution of hardened concrete. As well resistance to crack resulted from shrinkage was transferred to better state by the addition of agent.

  • PDF