• Title/Summary/Keyword: crack behavior

Search Result 2,394, Processing Time 0.025 seconds

Finite Element Analysis for the Prediction of Fatigue Crack Opening Behavior Using Cyclic Crack Tip Opening Displacement (되풀이 균열 선단 열림 변위를 이용한 피로 균열 열림 거동 예측을 위한 유한 요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1455-1460
    • /
    • 2006
  • The relationship between fatigue crack growth behavior and cyclic crack tip opening displacement is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the growth behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. We investigate the relationship between the reversed plastic zone size and the changes of the cyclic crack tip opening displacement along the crack growth. We investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is related to fatigue crack opening behavior.

Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy (박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측)

  • Kim, S.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading (혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계)

  • Seo, Ki-Jeong;Song, Sam-Hong;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

Short Crack Analysis by Fatigue Crack Opening Behavior (피로균열개구거동을 이용한 짧은균열의 거동 분석)

  • Song, Sam-Hong;Lee, Kyeong-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

A Study on Initial Transient Behavior in Creep-Fatigue Crack Growth (크리프-피로 균열성장에서의 초기 천이거동에 대한 연구)

  • 백운봉;남승훈;윤기봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1722-1729
    • /
    • 1994
  • At early stage of creep-fatigue crack growth tests, initial transient behavior which implies high crack growth rate has been generally observed by some researchers. Since the influence of the initial transient crack growth behavior on the remaining life of components is significant, cause of it should be further studied. In this study, characteristics of the initial transient behavior of 1Cr-1Mo-0.25V steel is studied experimentally by performing creep-fatigue crack growth tests at $538^{\circ}C$ in air under trapezoidal waveshapes. It is verified that the cause of the initial transient behavior is not high ${(C_t)}_{avg}$ values due to the small scale creep condition at the early stage of test, but oxidation-dominated crack growth mechanism during the transient period which is different from the creep-dominated crack growth mechanism in steady crack growth period.

The Variation of Fatigue Crack Propagation Behavior by Crack-crack Interaction (크랙 사이의 간섭에 의한 피로크랙 전파거동의 변화)

  • 송삼홍;배준수;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.820-825
    • /
    • 1994
  • It is improtant to examine life or crack propagation behavior of structures because of its safety evaluation. The purpose of this study is to investigate the effect of crack-crack interaction to evaluate fatigue life and crack behavior. In this study, the behavior of the interaction of two cracks is studied by experiment. The vertical distance of two cracks is varied to make different interaction stress field. In addition, the effect of plastic zone is considered to examine crack propagation path and propagation rate.

  • PDF

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part I : Details of crack Closure Behavior) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동 (Part I: 균열닫힘 거동 상세))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.79-84
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are Investigated by performing narrow- and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks.

  • PDF

A Study on Nonlinear Behavior of RC Structure using Different Crack Models (균열모델을 사용한 철근콘크리트 구조물의 비선형거동 해석에 관한 연구)

  • Kim, Sung-Chil;Ahn, Young-Ki;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.139-146
    • /
    • 2002
  • A analysis of crack behavior in RC member was performed by nonlinear finite element method. Two crack models were used in F.E.M.(finite element method): one was FCM (the fixed crack model) and the other was RCM (the rotated crack model). Based on parametric study, the ratio of shear steel, strength of concrete, and a/d(shear span/effective depth) were compared with test results of references. According to the test results, when the member behavior was affected by the shear or diagonal tension, RCM was reasonable. However, when the behavior was affected by the flexibility, FCM was more appropriate. In addition, each crack model behavior for the change of shear steel ratio, the increase of strain energy was constant in FCM, but it was different in RCM because of diagonal crack distribution and crack width. Since the strength of concrete is affected not only by shear but also by flexural strength, each crack model behavior yields similar results.