• Title/Summary/Keyword: crack

Search Result 9,316, Processing Time 0.04 seconds

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading (충돌하중을 받는 이방향 비부착 프리스트레스트 콘크리트 패널부재의 충돌저항성능에 대한 실험적 거동 평가)

  • Yi, Na-Hyun;Lee, Sang-Won;Lee, Seung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.485-496
    • /
    • 2013
  • In recent years, frequent terror or military attacks by explosion or impact accidents have occurred. Examplary case of these attacks were World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. These attacks of the civil infrastructure have induced numerous casualties and property damage, which raised public concerns and anxiety of potential terrorist attacks. However, a existing design procedure for civil infrastructures do not consider a protective design for extreme loading scenario. Also, the extreme loading researches of prestressed concrete (PSC) member, which widely used for nuclear containment vessel, gas tank, bridges, and tunnel, are insufficient due to experimental limitations of loading characteristics. To protect concrete structures against extreme loading such as explosion and impact with high strain rate, understanding of the effect, characteristic, and propagation mechanism of extreme loadings on structures is needed. Therefore, in this paper, to evaluate the impact resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, impact tests were carried out on $1400mm{\times}1000mm{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PS), prestressed concrete with rebar (PSR, general PSC) specimens. According to test site conditions, impact tests were performed with 14 kN impactor with drop height of 10 m, 5 m, 4 m for preliminary tests and 3.5 m for main tests. Also, in this study, the procedure, layout, and measurement system of impact tests were established. The impact resistance capacity was measured using crack patterns, damage rates, measuring value such as displacement, acceleration, and residual structural strength. The results can be used as basic research references for related research areas, which include protective design and impact numerical simulation under impact loading.

Auxiliary Reinforcement Method for the Safety of Tunnelling Face (터널 막장안정성에 따른 보강공법 적용)

  • Kim, Chang-Yong;Park, Chi-Hyun;Bae, Gyu-Jin;Hong, Sung-Wan;Oh, Myung-Ryul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • Tunnelling has been created as a great extent in view of less land space available because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities. In tunnelling, it is often faced that measures are obliged to be taken without confirmation for such abnormality as diverged movement of surrounding rock mass, growing crack of shotcrete and yielding of rockbolts. In this case, it is usually said that the judgments of experienced engineers for the selection of measure are importance and allowed us to get over the situations in many construction sites. But decrease of such experienced engineers need us to develop the new system to assist the selection of measures for the abnormality without any experiences of similar tunnelling sites. In this study, After a lot of tunnelling reinforcement methods were surveyed and the detail application were studied, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Electrical resistivity characteristics for cement specimens with TiO2 according to activated carbon content (활성탄 함유량에 따른 광촉매(TiO2) 시멘트 시편의 전기비저항 특성)

  • Kong, Tae-Hyun;Lee, Jong-Won;Ye, Ji-Hun;Ahn, Jaehun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.591-610
    • /
    • 2020
  • Concrete with activated carbon and titanium dioxide (TiO2) has been used to reduce the particulate matter (PM) in underground structures (e.g., tunnels) due to the high performance of nitrogen oxides (NOx) abatement. Damage (e.g. crack, spalling, or detachment) can be caused by the environmental and ageing effects on the surface of the particulate matter reduction concrete, installed on the tunnel lining. Therefore, it is important to evaluate the existence of spalling on the concrete surface for maintaining performance of NOx reduction. In this study, a basic research was performed for feasibility of spalling evaluation using electrical resistivity characteristics. Given the test results, the electrical resistivity was decreased as the ratios of activated carbon (0~15%) and TiO2 (0~25%) were increased for specimens. Under a dry condition, electrical resistivity of cement specimens, mixed with activated carbon and TiO2, was decreased up to 2.3 times, compared with the normal cement specimen. In addition, under saturation conditions (degree of saturation: 85~98%), electrical resistivity of cement specimens with activated carbon, was decreased up to 3.5 times, compared with the normal cement specimen. Regardless of the condition (dry or saturated), the difference of electrical resistivity values shows the range of 2.3~2.8 times between the mixing specimen (with activated carbon (15%) and TiO2 (25%)) and the normal cement specimen. This study can help to provide basic knowledge for spalling evaluation using the electrical resistivity on the surface of the particulate matter reduction concrete in tunnels.

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

Post-thaw Development of Rabbits Pronuclear Embryos by Cryopreservation (토끼 전핵배의 동결보존 후 배발달률)

  • 강다원;조성근;한재희;곽대오;이효종;최상용;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 1999
  • This study assessed development in vitro of pronuclear(PN) stage embryos cryopreserved by the method of either vitrification or slow freezing, by using of different cryoprotectants, and equilibration and cooling rate, in rabbit. Ethyleneglycol- ficoll- sucrose(EFS) or ethyleneglycol- polyvinylpyrrolidone - galactose- (EPG-I) for vitrification, and EPG- II for slow freezing as cryoprotectant were used. The pronuclear embryos were exposed to EFS for 0 to 5 min and diluted with D-PBS and/or pre-dilution with 0.5 M sucrose. To examine the viability of frozen-thawed embryos, PN embryos were co-cultured with bovine oviductal epitherial cell(BOEC) for 5 days to hatching blastocyst stage in 39 $^{\circ}C$ 5% $CO_2$incubator. The results obtained were as follows: The dilution with 0.5 M sucrose and D-PBS after the exposure to EFS for 1.0 min resulted in no significant(P<0.05) decrease in the development of PN embryos to hatching blastocyst(72.0%), compared with controls. The development of PN embryos cryopreserved to hatching blastocyst was not significantly (P<0.05) different between EFS for 1.0 min(72.0%), EPG-I for 1.0 min(72.0%) and EPG-II for 30 min(66. 7%). The post-thaw development of PN embryos to hatching blastocyst was similarly very low as 6.1% and 11.5% in vitrification with EFS and slow freezing with EPG-II, respectively. The incidence of post-thaw zona-crack in PN embryos cryopreserved by slow freezing with plunging to liquid nitrogen at -35$^{\circ}C$ was signicantly(P<0.05) higher(25.0%), compared with -85$^{\circ}C$ (1.9%). These results indicated that the rabbit PN embryos could be cryopreserved with either vitrification or slow freezing procedure, and frozen PN embryos could be successfully developed in vitro to haching blastocyst. but the post-thaw development of cryopreserved PN embryos was still very low under the present conditions.

  • PDF

The effect of reinforcing methods on fracture strength of composite inlay bridge (강화재의 사용 방법이 복합 레진 인레이 브릿지의 파괴 강도에 미치는 영향)

  • Byun, Chang-Won;Park, Sang-Hyuk;Sang-Jin, Park;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2007
  • The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Direct bonding of Si(100)/Si$_3$N$_4$∥Si (100) wafers using fast linear annealing method (선형열처리를 이용한 Si(100)/Si$_3$N$_4$∥Si (100) 기판쌍의 직접접합)

  • Lee, Young-Min;Song, Oh-Song;Lee, Sang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 2001
  • We prepared 10cm-diameter Si(100)/500 $\AA$-Si$_3$N$_4$/Si(100) wafer Pairs adopting 500 $\AA$ -thick Si$_3$N$_4$layer as insulating layer between single crystal Si wafers. Si3N, is superior to conventional SiO$_2$ in insulating. We premated a p-type(100) Si wafer and 500 $\AA$ -thick LPCVD Si$_3$N$_4$∥Si (100) wafer in a class 100 clean room. The cremated wafers are separated in two groups. One group is treated to have hydrophobic surface and the other to have hydrophilic. We employed a FLA(fast linear annealing) bonder to enhance the bond strength of cremated wafers at the scan velocity of 0.1mm/sec with varying the heat input at the range of 400~1125W. We measured bonded area using a infrared camera and bonding strength by the razor blade crack opening method. We used high resolution transmission electron microscopy(HRTEM) to probe cross sectional view of bonded wafers. The bonded area of two groups was about 75%. The bonding strength of samples which have hydrophobic surface increased with heat input up to 1577mJ/$m^2$ However, bonding strength of samples which have hydrophilic surface was above 2000mJ/$m^2$regardless of heat input. The HRTEM results showed that the hydrophilic samples have about 25 $\AA$ -thick SiO layer between Si and Si$_3$N$_4$/Si and that maybe lead to increase of bonding strength.

  • PDF

Aging Effects in the Two-phase Intermetallic compounds Based on Cr-doped $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$ (Cr 첨가 $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$기 2상 금속간화합물의 시효처리 효과)

  • Lee, Jae-Gyeong;Park, Jeong-Yong;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.951-955
    • /
    • 1999
  • Two-phase Al-21Ti-23Cr alloy containing 20 vol.% $\textrm{Cr}_{2}\textrm{Al}$ as a second phase in the $Ll_2$ matrix is located in the two- phase region of the Al- Ti- Cr phase diagram at $1150^{\circ}C$, while in the three-phase region at $1000^{\circ}C$. Based on this result, the mechanical properties of the A1-21Ti-23Cr alloy were enhanced through the refined precipitation of the third phase in the $Ll_2$ matrix by aging the alloy below $1000^{\circ}C$. It was observed that a several ,m of the third phase precipitated in the $Ll_2$ matrix through aging at $800^{\circ}C$ and $1000^{\circ}C$, but the precipitation was not observed below $600^{\circ}C$. Furthermore, the third phase was more finely precipitated at $800^{\circ}C$ than at $1000^{\circ}C$. Although the third phase precipitated at $800^{\circ}C$ and at $1000^{\circ}C$, the compressive yield strength increased rapidly at $800^{\circ}C$ only. This is probably attributable to the refined precipitation of the third phase in the $Ll_2$ matrix. It is expected that the precipitation of the third phase. which was confirmed to be the TiAlCr phase, improves the mechanical properties by preventing crack propagation in the $Ll_2$ matrix.

  • PDF

Quality Characteristics of Cookies Prepared with Fresh and Steamed Garlic Powders (생마늘 및 증숙마늘 분말 첨가 쿠키의 품질특성)

  • Lee, Soo-Jung;Shin, Jung-Hye;Choi, Duck-Joo;Kwen, O-Chen
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1048-1054
    • /
    • 2007
  • The quality characteristics of cookies, prepared with the freeze dried fresh garlic (FGP) and steamed ($100^{\circ}C$, 20 min) garlic (SGP) powders, were investigated. The cookie samples in the present study were made by adding the garlic powders at different levels (0, 0.5, 1, 2, 4, and 6%). The highest spread ratio, $8.48{\pm}0.31$ and $8.62{\pm}0.21$, were obtained by mixing 6% FGP and 0.5% SGP with the cookies. Among the surface color of the cookies, the L-value decreased with increasing garlic powder contents compared to that of the control group, but the difference in the surface color among the kinds of garlic powders was insignificant. Although increases in the garlic powder content resulted in no noticeable difference among the a-value of the test group, the b-value was decreased significantly, particularly with increasing SGP contents. Hardness was also increased along with the garlic powder contents and was highest at its 2% content. When viewed from the sensor properties, the measured color tended to become brown at the garlic powder contents greater than 2%. The surface crack of the cookies also increased as the SGP content increased. Its garlic taste and flavor were slightly low at SGP added with 6% garlic powder content than FGP. The overall acceptability was higher in $0.5{\sim}4%$ added test samples than those in control group sample; it was highest for 1%, 2% and 0.5%, in decreasing order. In the sensor evaluation, the overall acceptability of the cookies was considerably different in the comparison of FGP added cookies with SGP added ones. Therefore, the optimal ratio investigated for making the garlic added cookies was shown to be 1 %, and its acceptability was relatively high for SGP added cookies.