• Title/Summary/Keyword: coyle model

Search Result 2, Processing Time 0.014 seconds

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF

Behavior of H-Type Steel Pile Under Axial Lond in Cohesionless Soils (사질토 지반에서 H-형 강말뚝의 축방향 거동)

  • Hong Sa-Myun;Lee Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.5-12
    • /
    • 2005
  • In early days, to analyze the behavior of single pile under axial load, many assumptions were made and field tests were performed. But in recent days, the development of computers led the use of the numerical analysis resulting in more realistic and correct results. The numerical methods are classified into Load Transfer Method and Elastic Solid Approach. In this study a numerical program applying t-z model to Load Transfer Method suggested by Coyle & Reese was developed. And another finite difference program using matrix based on this load transfer was developed. As a result, it is found that the values of the F.D.M. were similar to the values measured in-situ.