• Title/Summary/Keyword: cowpea starch gel

Search Result 13, Processing Time 0.014 seconds

Physicochemical Properties of Cowpea Crude and Refined Starch (동부 조전분 및 정제전분의 이화학적 특성)

  • 윤혜현;이혜수
    • Korean journal of food and cookery science
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 1987
  • The purpose of this study is to investigate the physicochemcal Properties of the cowpea crude and refined starch and to present the basic data for physicochemical factor which gives the properties of Mook to cowpea starch gel. Water binding capacity of crude starch was 235. In and that of refined starch was 186.0%. The pattern of change in swelling power and solubility for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, for both of crude and refined starch. The optical transmittance of 0.2% crude and refined starch suspensions were increased from $65^{\circ}C$ and showed rapid increasement during 68~$80^{\circ}C$, and their curves showed two-stage processes. The gelatinization pattern for 6n crude and refined starch suspensions were investigated by the Brabender amylograph. The corves showed the pasting temperature of $72.0^{\circ}C$ and $72.1^{\circ}C$, peak height of 11303.U. ($88.0^{\circ}C$) and 970 B.U. ($83.5^{\circ}C$) for crude and refined starch, respectively, and both showed high viscosities when cooling. Blue values for crude and refined starch were 0.369 and 0.376 respectively. Alkali number of crude and refined starch were 7.77 and 7.34, and reducing values were 3.60 and 2. 10, respectively. Amylose content of cowpea starch was 33.7%. Periodate oxidation of the starch fractions resulted that amylose had the average molecular weight of 23590, degree of polymerization of 146 and amylopectin had the degree of branching of 3.42, glucose unit per segment of 29.

  • PDF

Mechanical and Sensory Characteristics of Dongbu-Mook (Cowpea Starch Gel) by the addition of Soybean Oil and Salt (대두유와 소금의 첨가에 따른 동부 묵의 기계적 텍스쳐 및 관능적 특성)

  • 구미영;이재경;김기숙
    • Korean journal of food and cookery science
    • /
    • v.18 no.3
    • /
    • pp.275-279
    • /
    • 2002
  • This study was carried out to investigate the effects of soybean oil and salt on the mechanical texture and sensory characteristics of Dongbu-Mook (Cowpea Starch Gel). As the amount of the soybean oil was increased, the hardness and chewiness of the Mook were decreased. But there were no significant difference in the cohesiveness and springiness. While the Mook samples made with commercial Dongbu-Mook flour didn't show a significant difference, those made with lab-manufactured Dongbu-Mook flour without salt showed higher hardness, chewiness than the ones with salt. The Mook made of commercial Dongbu-Mook flour was found to be higher in the hardness and lower in the cohesiveness than the one made of lab-manufactured Dongbu-Mook flour. In sensory evaluation, as the amount of soybean oil was increased, all the samples showed higher yellowness and greasiness, and lower clarity, hardness and chewiness. For the samples with salt, the yellowness was high, and the hardness was low. The Mook samples made with lab-manufactured Dongbu-Mook flour had low chewiness. There was no significant difference in the clarity and greasiness. Overall, the Mook samples made with commercial Dongbu-Mook flour showed the best quality, when soybean oil was not added and salt was added. For the Mook made with lab-manufactured Dongbu-Mook flour, the sample with 2% oil and salt was the best.

Physicochemical Properties and Gel Forming Properties of Mungbean and Buckwheat Crude Starches (녹두와 메밀 조전분의 이화학적 특성 및 겔 형성)

  • 주난영;이혜수
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 1989
  • The physicochemical properties and gel forming properties of mungbean and buckwheat crude starches were investigated. The results were as follows; 1. The granule size and shape of mungbean crude starch were $11~32\mu\textrm{m}$ and oval, and those of buckwheat crude starch were $3~10 \mu\textrm{m}$ and polygonal. 2. The amylose conteut of mungbean crude starch and buckwheat crude starch were 78.0% and 26.4% respectively. 3. The blue value of mungbean crude starch and buckwheat crude starch were 1.030 and 0.409, respectively. 4. Periodate oxidation of mungbean crude starch resulted that amylose had the average molecular weight of 95, 648, degree of polymerization of 590 and amylopectin had the degree of branching of 5.4, glucose unit per segment of 18.6, and periodate oxidation of buckwheat crude starch resulted that amylose had the average molecular weight of 133, 690, degree of polymerization of 825 and amylopectin had the degree of branching of 5.2, glucose unit per segment of 19.2 5. Water binding capacity of mungbean crude starch was 185.1% and that of buckwheat was 209.9% 6. The pattern of change in swelling power of mungbean crude starch for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, and that of buckwheat increased slowly from $60^{\circ}C$ to $90^{\circ}C$ without rapid increase. 7 The ranges of gelatinization temp. of mungbean and buckwheat crude starches were 63. 9-$109^{\circ}C$ and 52.5-84.$2^{\circ}C$, respectively. 8. The gelatinization patterns for 6% munbean crude starch and 8% buckwheat crude starch were investigated by Brabender amglograph. Mungbean crude starch showed the initial pasting temperature of 77.6$^{\circ}C$ without peak height, and buckwheat crude starch showed that of $62.5^{\circ}C$ without peak height. In addition, sensory evaluation for sample starch gels (mungbean, buckwheat, cowpea) was done. 1. The difference of sensory characteristics for each starch gel was significant. 2. The sample starch gels were regarded as 'Mook' by pannels. 3. 74.44% of the degree of Mooklike was explained by hardness.

  • PDF