• Title/Summary/Keyword: coverage metric

Search Result 22, Processing Time 0.016 seconds

Exploration and Application of Regulatory PM10 Measurement Data for Developing Long-term Prediction Models in South Korea (PM10 장기노출 예측모형 개발을 위한 국가 대기오염측정자료의 탐색과 활용)

  • Yi, Seon-Ju;Kim, Ho;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.114-126
    • /
    • 2016
  • Many cohort studies have reported associations of individual-level long-term exposures to $PM_{10}$ and health outcomes. Individual exposures were often estimated by using exposure prediction models relying on $PM_{10}$ data measured at national regulatory monitoring sites. This study explored spatial and temporal characteristics of regulatory $PM_{10}$ measurement data in South Korea and suggested $PM_{10}$ concentration metrics as long-term exposures for assessing health effects in cohort studies. We obtained hourly $PM_{10}$ data from the National Institute of Environmental Research for 2001~2012 in South Korea. We investigated spatial distribution of monitoring sites using the density and proximity in each of the 16 metropolitan cities and provinces. The temporal characteristics of $PM_{10}$ measurement data were examined by annual/seasonal/diurnal patterns across urban background monitoring sites after excluding Asian dust days. For spatial characteristics of $PM_{10}$ measurement data, we computed coefficient of variation (CV) and coefficient of divergence (COD). Based on temporal and spatial investigation, we suggested preferred long-term metrics for cohort studies. In 2010, 294 urban background monitoring sites were located in South Korea with a site over an area of $415.0km^2$ and distant from another site by 31.0 km on average. Annual average $PM_{10}$ concentrations decreased by 19.8% from 2001 to 2012, and seasonal $PM_{10}$ patterns were consistent over study years with higher concentrations in spring and winter. Spatial variability was relatively small with 6~19% of CV and 21~46% of COD across 16 metropolitan cities and provinces in 2010. To maximize spatial coverage and reflect temporal and spatial distributions, our suggestion for $PM_{10}$ metrics representing long-term exposures was the average for one or multiple years after 2009. This study provides the knowledge of all available $PM_{10}$ data measured at national regulatory monitoring sites in South Korea and the insight of the plausible longterm exposure metric for cohort studies.

Analyses of the indispensible Indices in Evaluating Gamma Knife Radiosurgery Treatment Plans (감마나이프 방사선수술 치료계획의 평가에 필수불가결한 지표들의 분석)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.303-312
    • /
    • 2017
  • The central goal of Gamma Knife radiosurgery(GKRS) is to maximize the conformity of the prescription isodose surface, and to minimize the radiation effect of the normal tissue surrounding the target volume. There are the various kinds of indices related with the quality of treatment plans such as conformity index, coverage, selectivity, beam-on time, gradient index(GI), and conformity/gradient index(CGI). As the best treatment plan evaluation tool, we must check by all means conformity index, GI, and CGI among them. Specially, GI and CGI related with complication of healthy normal tissue is more indispensible than conformity index. Then author calculated and statistically analysed CGI, the newly defined conformity/gradient index as well as GI being applied widely using the treatment planning system Leksell GammaPlan(LGP) and the verification method Variable Ellipsoid Modeling Technique(VEMT). In the study 10 patients with intracranial lesion treated by GKRS were included. Author computed the indices from LGP and VEMT requiring only four parameters: the prescribed isodose volume, the volume with dose > 30%, the target volume, and the volume of half the prescription isodose. All data were analyzed by paired t-test, which is statistical method used to compare two different measurement techniques. No statistical significance in GI at 10 cases was observed between LGP and VEMT. Differences in GI ranged from -0.14 to 0.01. The newly defined gradient index calculated by two methods LGP and VEMT was not statistically significant either. Author did not find out the statistical difference for the prescribed isodose volume between LGP and VEMT. CGI as the evaluation index for determining the best treatment plan is not significant statistically also. Differences in CGI ranged from -4 to 3. Similarly newly defined Conformity/Gradient index for GKRS was also estimated as the metric for the evaluation of the treatment plans through statistical analysis. Statistical analyses demonstrated that VEMT was in excellent agreement with LGP when considering GI, new gradient index, CGI, and new CGI for evaluating the best plans of GKRS. Due to the application of the fast and easy evaluation tool through LGP and VEMT author hopes CGI and newly defined CGI as well as gradient indices will be widely used.