• Title/Summary/Keyword: coupling slab

Search Result 68, Processing Time 0.027 seconds

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Coupling through a narrow slit in a parallel-plate waveguide covered by a dielectric slab with a conducting strip on the slab (유전체 슬랩으로 덮힌 평행평판 도파관의 좁은 슬릿을 통한 슬랩 위의 도체 스트립과의 결합)

  • Lee, Jong-Ik;Hong, Jae-Pyo;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2000
  • The problem of electromagnetic coupling through a narrow slit in a parallel-plate waveguide(PPW) covered by a dielectric slab with a conducting strip on the slab is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations for the tangential electric field in the slit and the induced current over the strip are derived and solved numerically by use of the method of moments. In order to show the effect of the conducting strip on the coupling, some numerical results for the reflected and transmitted powers in the guide, the coupled power through the slit, the equivalent slit admittance, and radiation pattern are presented. From the results, it is observed that the maximum available power coupled through the slit exterior to the PPW amounts upto 50% of the incident power in the PPW.

  • PDF

The Behavior of Reinforced Concrete Coupling Slab in Wall-Dominant System (벽식 아파트 구조에서 연결슬래브의 거동특성)

  • Choi, Youn-Cheul;Choi, Hyun-Ki;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • A common form of construction for apartment buildings consists of walls and coupling element. But, the structural behavior of coupling element are very complex and affected by the properties of coupling element. The propose of this paper is to evaluation the behavior of coupling element in wall-dominant system. An 1/2 scale three specimens was constructed and under cyclic loads. The specimen was consisted of opening walls and coupling element as well as floor slabs. From the result of this study, in coupling slabs, the stresses were not uniform across the width. And the effective width of coupling slabs was found smaller than the that of predicted from previous studies.

  • PDF

The Structural Behavior of Reinforced Concrete R/C Couplinging Beams in Wall-Dominant System (벽식구조 아파트에서 전단벽 연결보의 구조적거동)

  • 장극관;천영수;서대원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.411-416
    • /
    • 2001
  • Preliminary experimental results are reported on the response of reversed T type linking reinforced concrete shear wall. Different layouts of coupling beams were tested and stiffness degradation and energy dissipation of coupling beams were evaluated. Diagonally reinforced coupling beams with slab showed larger ductility and larger amount of energy absorption to be attained compared with conventionally reinforced concrete coupled beams.

  • PDF

A Study on Coupling Coefficient Between Rail and Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 레일과 철근 사이의 결합계수에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.405-411
    • /
    • 2009
  • Railway signaling system in a rapid transit using the ATC system the approved a speed limit to a train and a part of signaling system in a metro approved a distance which is possible to move. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies

  • Xiong, Liquan;Men, Jinjie;Ren, Ruyue;Lei, Mengke
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • The composite reinforced concrete and steel (RCS) structural systems have larger structural lateral stiffness, higher inherent structural damping, and faster construction speed than either traditional reinforcement concrete or steel structures. In this paper, four RCS subassemblies with or without the RC slab designed following a strong column-weak beam philosophy were constructed and tested under reversed-cyclic loading. Parameters including the width of slab and composite effect of the RC slab and beam were explored. The test results showed that all specimens performed in a ductile manner with plastic hinges formed in the beam ends near the column faces. The seismic responses of composite connections are influenced significantly by different width of slabs. Compared with that of the steel beam without the RC slab, it was found that the load carrying capacity of composite connections with the RC slab increased by 30% on average, and strength degradation, energy dissipation also had better performance, while the ductility of that were almost the same. Furthermore, the contribution of connection deformation to the overall specimen displacement was analyzed and compared. It decreased approximately 10% due to the coupling effect in the columns and beams with the RC slab. Based on the test result, some suggestions are presented for the design of composite RCS joints.

Optical Waveguiding in the Polymerized Organic Films (유기물 박막에서의 광도파 현상)

  • 박홍준;권영세
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.5
    • /
    • pp.5-11
    • /
    • 1982
  • The dielectric slab waveguide is fabricated on the slide glass or oxidized silicon wafer, by spin coating polyurethane, epoxy or photoresist, and the phenomenon of dielectric waveguiding is oboerved. Using the fact that the refractive index of K.P.R. is larger than that of polyurethane, thin film prism with two layered structure is fabricated, and the refraction of light is observed.

  • PDF

Analysis of Prestressed Concrete Slab Bridge by the Beam Theory (보 이론에 의한 PSC 슬래브 교량의 해석)

  • Han, Bong-Koo;Kim, Duk-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • A prestressed concrete slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis.

Propagation loss measurement of silica slab waveguide using index matching fluid (굴절률 정합액을 이용한 실리카 슬랩도파로의 전송손실 측정)

  • 성희경;박상호;신장욱;심재기
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.174-177
    • /
    • 1999
  • The propagation loss of silica slab waveguides were measured by immersing slab waveguides into a index matching liqiud. Index matching liqiud was used for out-coupling the light from arbitrary points of slab waveguide. The measured value of propagation loss are 0.04 dB/cm and 0.09 dB at 1300 nm and 633 nm respectively.

  • PDF