• 제목/요약/키워드: coupling reaction

검색결과 520건 처리시간 0.025초

DFT 계산을 이용한 Buchwald-Hartwig amination 반응 메커니즘 연구

  • 강성우
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.371-383
    • /
    • 2014
  • 이 연구에서는 팔라듐 착물 $Pd(PPh_3)_2$을 사용한 bromotoluene과 morpholine간의 coupling reaction (Buchwald-Hartwig amination) 반응 메커니즘을 계산화학적 방법을 이용하여 연구하였다. 용매화 자유에너지를 고려한 중간체 에너지를 비교하였으며, 반응물질이 o-bromotoluene 일 때와 p-bromotoluene 일 때, 반응 중간체로 monophosphine 착물이 형성되는 경우와 bisphosphine 착물이 형성되는 경우를 비교하였으며, 반응 중간체로 bisphosphine 착물이 형성되는 경우 cis 이성질체가 중간체인 경우와 trans 이성질체가 중간체인 경우를 비교하였다. 그 결과, 반응물로 p-bromotoluene을 사용할 때 o-bromotoluene을 사용할 때보다 중간체가 상대적으로 더 안정하여 더 좋은 수득률을 얻을 수 있을 것으로 예상되었다. 또한 $Pd(PPh_3)_n(o-tolyl)(N(CH_2CH_2)_2O)$ (n=1 또는 2) 중간체를 제외하고는 모든 경우에서 bisphosphine 중간체가 형성되는 반응경로가 더 안정한 것으로 밝혀졌다. 그리고 $Pd(PPh_3)_2ArBr$의 경우 trans 이성질체가 cis 이성질체보다 안정하지만 $Pd(PPh_3)_2Ar(N(CH_2CH_2)_2O)$의 경우 반대로 cis 이성질체가 trans 이성질체보다 안정한 것으로 나타났다.

  • PDF

Chlorosulfonated Polyethylene의 저온가황반응(低溫加黃反應) (Low Temperature Vulcanization of Chlorosulfonated Polyethylene)

  • 박근식;박성하;최세영
    • Elastomers and Composites
    • /
    • 제27권4호
    • /
    • pp.255-261
    • /
    • 1992
  • Chlorosulfonated polyethylene(CSM) was moisture-cure after treating them with silane coupling agents such as ${\gamma}-mercapto$ propyl trimethoxy silane, ${\gamma}-glycidoxy$ propyl triethoxy silane and methyl triethoxy silane, 3-(trimethoxy silyl) propyl methacrylate and 3-thiocyanopropyl triethoxy silane. The cure reaction is composed two steps. The first is the reaction between chlorosulfonyl groups of CSM and silane coupling agents. The second is the formation of cross-links which are siloxane linkage. The linkage is formed by the condensation of silanol groups which are produced by the hydrolysis of alkoxysilyl groups. CSM was mixed with MPS etc., and dilaurate dilaurate as catalyst on two open mill and the compounds were lured in hot water at $70^{\circ}C$ Physical properties of moisture-cured CSM was measured. CSM was effectively moisture-cured and r-mercapto propyl trimethoxy silane and r-glycidoxy propyl trimethoxy silane were capable of the vulcanizing agents.

  • PDF

Synthesis, X-Ray Crystal Structure and Coupling Reactions of 4,5-($1^{\prime},2^{\prime}$-diphenylethylenedithio)-1,3-dithiole-2-thione (dPhEDT-DTT)

  • 이하진;노동윤
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권3호
    • /
    • pp.340-344
    • /
    • 1998
  • A facile synthesis of 4,5-(1',2'-diphenylethylenedithio)-1,3-dithiole-2-thione (dPhEDT-DTT) is carried out via a Diels-Alder type [2+4] cycloaddition reaction of 1,3-dithiol-2,4,5-trithione oligomer and t-stilbene. Molecular structure of dPhEDT-DTT is determined by x-ray crystallography: space group P1, a=11.694(3) Å, b=12.117(3) Å, c=14.688(3) Å, α=113.12(2)°, β=102.23(2)°, γ=107.02(2)°, V= 1699.1(7) Å3, Z=2. It turns out that dPhEDT-DTT crystallizes as a racemic compound consisting of (R,R) and (S,S) enantiomers. Coupling reaction of dPhEDT-DTO undergone in neat P(OEt)3 yields TTF(SEt)4 instead of ET derivative. When PR3 (R=OEt, OPh, Ph) is used in benzene, toluene or xylene, however, dPhEDT-DTO is decomposed.

An Efficient Synthesis of 3-(E)-Hydroxypropenyl Cephem Derivatives, Key intermediates for 3-(E)-Ammoniopro-penylcephalosporing Antibiotics

  • Lee, Yong-Sup;Lee, Jae-Yeol;Jeong, Jin-Hyun;Park, Hokoon
    • Archives of Pharmacal Research
    • /
    • 제20권3호
    • /
    • pp.288-290
    • /
    • 1997
  • An efficient synthesis of 3-(E)-hydroxy- and 3-(E)-acetoxypropenylcephem derivatives, key intermediates for the synthesis of 3-(E)-propenylcephalosporins was achieved via Stille coupling reaction of 3-trifloxycephem with 3-(E)-tributylstannylallylic alcohol.

  • PDF

Identification of Homoserine Lactone Derivatives Using the Methionine Functionalized Solid Phase Synthesis by Gas Chromatography/Mass Spectrometry

  • Moon, Hong-Sik
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.25-30
    • /
    • 2004
  • Combinatorial homoserine lactone mixtures and individual products were obtained from the methionine-functionalized resin in solid-phase synthesis. The four-step process consisting of a coupling step of an N-Fmoc-L-methionine, deprotection of N-Fmoc group, N-coupling with a carboxylic acid, and cleavage reaction through a polymer supported strategy is described. Gas chromatography-mass selective detector (GC-MSD) techniques provide the most powerful methods for identifying both the combinatorial mixtures and individual products.