• 제목/요약/키워드: coupling effects

Search Result 940, Processing Time 0.024 seconds

Roll-Pitch-Yaw Integrated H Controller Synthesis for High Angle-of-Attack Missiles

  • Choi, Byung-Hun;Kang, Seon-Hyeok;Kim, H. Jin;Won, Dae-Yeon;Kim, Youn-Hwan;Jun, Byung-Eul;Lee, Jin-Ik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.66-75
    • /
    • 2008
  • In this work, we explore the feasibility of roll-pitch-yaw integrated autopilots for high angle-of-attack missiles. An investigation of the aerodynamic characteristics of a surface-to-air missile is presented, which reveals the strong effects of cross coupling between the longitudinal and lateral dynamics. Robust control techniques based on $H_{\infty}$ synthesis are employed to design roll-pitch-yaw integrated autopilots. The performance of the proposed roll-pitch-yaw integrated controller is tested in high-fidelity nonlinear five-degree-of-freedom simulations accounting for kinematic cross-coupling effects between the lateral and longitudinal channels. Against nonlinearity and cross-coupling effects of the missile dynamics, the integrated controller demonstrates superior performance when compared with the controller designed in a decoupled manner.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

EVALUATION OF VOLUME VELOCITY OF A LOUDSPEAKER IN A CHAMBER

  • Lee, J.S.;Ih, J.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.770-774
    • /
    • 1994
  • The volume of an acoustic source is important in determining various acoustic parameters. One of the suggested techniques is the internal pressure method incorporating a loudspeaker attached to a chamber wall and a microphone inserted into the cavity. Although the method is easy to handle with a very simple measurement setup, the coupling effects between the dynamic system of the loudspeaker and acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field should be considered for precise result. In this study, higher order modes due to the discontinuities of loudspeaker and microphone boundaries are included and the electro-acoustic coupling effects are compensated for by using the results of two cylinders with different lengths. The volume velocity of a loudspeaker thus obtained agrees very with that measured by laser sensor.

  • PDF

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction

  • Lefrancois, Emmanuel;Brandely, Anais;Mottelet, Stephane
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.235-254
    • /
    • 2016
  • A numerical model for fluid-structure interactions (abbr. FSI) is presented in the context of sloshing effects in movable, partially filled tanks to improve understanding of interactions between the fluid and the dynamics of a tank flexibly attached to a vehicle. The purpose of this model is to counteract the penalizing impact of the added mass effect on classical partitioned FSI coupling scheme: the proposed investigation is based on an added mass corrected version of the classical strongly coupled partitioned scheme presented in (Song et al. 2013). Results show that this corrected version systematically allows convergence to the coupled solution. In the rare cases where convergence is already obtained, the corrected version significantly reduces the number of iterations required. Finally, it is shown that the convergence limit imposed by added mass effect for the non-corrected coupling scheme, is directly dependent on the aspect ratio of the fluid domain and highly related to the precision order of the temporal discretization scheme.

Loess Dyeing on Cotton Fabrics using Silane Coupling Agent (Silane Coupling제를 이용한 면직물의 황토염색)

  • Kim, Seong U;Nam, Seong U;Kim, In Hoe
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.48-48
    • /
    • 2001
  • The effects of silane coupling agent on the performance properties of cotton fabrics treated with loess and its washing durability were investigated. Mean average diameter of loess was 17.88㎛ and main components were SiO₂, Al₂O₃ and Fe₂O₃. By using the cationic agent, the dyeability of cotton fabrics was improved. The washing durability, antibacterial property and deodorization rate were improved and very good emissivities of far infra-red rays were obtained by using the silane coupling agent. And also the mechanical properties of cotton fabrics, such as primary hand values, were improved.

Loess Dyeing on Cotton Fabrics using Silane Coupling Agent (Silane Coupling제를 이용한 면직물의 황토염색)

  • 김성우;남성우;김인회
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.336-345
    • /
    • 2001
  • The effects of silane coupling agent on the performance properties of cotton fabrics treated with loess and its washing durability were investigated. Mean average diameter of loess was $17.88\mu{m}$ and main components were $SiO_2,\;Al_2O_3\;and\;Fe_2O_3$. By using the cationic agent, the dyeability of cotton fabrics was improved. The washing durability, antibacterial property and deodorization rate were improved and very good emissivities of far infra-red rays were obtained by using the silane coupling agent. And also the mechanical properties of cotton fabrics, such as primary hand values, were improved.

  • PDF

Tailoring Magnetic Interlayer Coupling Contribution via Lateral Confinement (가로 가둠을 통한 자성층간 결합 기여도 조절)

  • Lee, Dong Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.5
    • /
    • pp.149-153
    • /
    • 2016
  • In Fe/Gd multilayers, patterning effect on the interlayer coupling was studied by comparing patterned and unpatterned samples that were cut from a multilayer film. A comparative study of the two samples via temperature dependent Gd-specific magnetization vector using X-ray magnetic circular dichroism (XMCD) shows that the temperature dependence of the Gd magnetization vector can be modified in the patterned sample due to a competition between the patterning and antiferromagnetic interlayer coupling effects.

Characterization of coupling optical modulator to the applied frequency (인가주파수에 따른 결합형 광변조기 특성변화)

  • 강기성
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.584-592
    • /
    • 1996
  • Coupling optical modulator which on the $LiTaO_3$ substrate is fabricated by using proton exchange method and self-aligned method. Proton exchange of proton diffusion method was applied to pattern a waveguide on $LiTaO_3$ substrate. The annealing at >$400^{\circ}C$ was carded out to control waveguide width and depth. The depths of the two annealed optical waveguides, which were measured by using .alpha.-step, were 1.435 K.angs. and 1.380 K.angs. Using .alpha.-step facility, we examined that the width of waveguides is increased from 5.mu.m to 6.45 .mu.m and 6.3.mu.m due to the annealing effects. The process of proton exchange was done at 150.deg. C for 120 min, >$200^{\circ}C$ for 60 min and annealing process was done at >$400^{\circ}C$ for 90 min, >$400^{\circ}C$ for 60 min. The high speed coupling optical modulator has very good figures of merits; the measured high frequency power were achieved.

  • PDF

Effects of Calcining Temperature on Planar Coupling Factor and Resonance Charcteristics of BaTiO3 (하소온도가 BaTiO3 세라믹의 Kp와 공진특성에 미치는 영향)

  • 정수태;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.66-70
    • /
    • 1986
  • The calcining temperature ranging from 900$^{\circ}C$ to 1300$^{\circ}C$ affected on the planar coupling factor and resonance characteristics of BaTiO3 ceramics doped with 0.2 wt% MnO2 have been investigated. Dielectric constant planar coupling factor and anti-resonance frequency of the sample increased with the calcining temperature up to 1,200$^{\circ}C$ and decreased above that temperature but the resonance frequency decreased slightly with the increasing calcining temperature. The planar coupling factor and anti-resonance frequency increased with the sintered density and dielectric constant while the resonance frequency was almost constant. The resonance and anti-resonance frequency increased with the sample temperature.

  • PDF