• Title/Summary/Keyword: coupling device

Search Result 399, Processing Time 0.027 seconds

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

Finite Element Analysis of RF Coupler in Normal-Low Temperature (상온-저온 RF 커플러 유한요소해석)

  • Kim, Hansol;Lee, Hak Yong;Park, Chan;Lee, Jaeyeol;Lim, Dong Yeal;Yoo, Jeonghoon;Hyun, Myung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1101-1107
    • /
    • 2014
  • A heavy ion accelerator is a device that accelerates heavy ions in the radio frequency (RF) range. The electric field that flows into the RF cavity continuously accelerates heavy ions in accordance with the phase of the input electromagnetic wave. For the purpose, it is necessary to design a coupler shape that can stably transfer the RF wave into the cavity. The RF coupler in a heavy ion accelerator has a large temperature difference between the input port and output port, which radiates the RF waves. It is necessary to consider the heat deflection on the RF coupler that occurs as a result of the rapid temperature gradient from an ultra-low temperature about 0 K to a room temperature about 300 K. The purpose of this study was to improve the system performance through an analysis of the intensity of the output electric field and temperature distribution considering various shapes of the RF coupler, along with an analysis of the durability considering the heat deflection and heat loss.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Sodium Dependent Taurine Transport into the Choroid Plexus, the Blood-Cerebrospinal Fluid Barrier

  • Chung, Suk-Jae;Ramanathan, Vikram;Brett, Claire M.;Giacomini, Kathleen M.
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.7-20
    • /
    • 1995
  • Taurine, a ${\beta}-amino$ acid, plays an important role as a neuromodulator and is necessary for the normal development of the brain. Since de novo synthesis of taurine in the brain is minimal and in vivo studies suggest that taurine dose not cross the blood-brain barrier, we examined whether the choroid plexus, the blood-cerebrospinal fluid (CSF) barrier, plays a role in taurine transport in the central nervous system. The uptake of $[^3H]-taurine$ into ATP depleted choroid plexus from rabbit was substantially greater in the presence of an inwardly directed $Na^+$ gradient taurine accumulation was negligible. A transient in side-negative potential gradient enhanced the $Na^+-driven$ uptake of taurine into the tissue slices, suggesting that the transport process is electrogenic, $Na^+-driven$ taurine uptake was saturable with an estimated $V_{max}$ of $111\;{\pm}\;20.2\;nmole/g/15\;min$ and a $K_M\;of\;99.8{\pm}29.9\;{\mu}M$. The estimated coupling ratio of $Na^+$ and taurine was $1.80\;{\pm}\;0.122.$ $Na^+-dependent$ taurine uptake was significantly inhibited by ${\beta}-amino$ acids, but not by ${\alpha}-amino$ acids, indicating that the transporter is selective for ${\beta}-amino$ acids. Since it is known that the physiological concentration of taurine in the CSF is lower than that in the plasma, the active transport system we characterized may face the brush border (i.e., CSF facing) side of the choroid plexus and actively transport taurine out of the CSF. Therefore, we examined in vivo elimination of taurine from the CSF in the rat to determine whether elimination kinetics of taurine from the CSF is consistent with the in vitro study. Using a stereotaxic device, cannulaes were placed into the lateral ventricle and the cisterna magna of the rat. Radio-labelled taurine and inulin (a marker of CSF flow) were injected into the lateral ventricle, and the concentrations of the labelled compounds in the CSF were monitored for upto 3 hrs in the cisterna magna. The apparent clearance of taurine from CSF was greater than the estimated CSF flow (p<0.005) indicating that there is a clearance process in addition to the CSF flow. Taurine distribution into the choroid plexus was at least 10 fold higher than that found in other brain areas (e. g., cerebellum, olfactory bulb and cortex). When unlabelled taurine was co-administered with radio-labelled taurine, the apparent clearance of taurine was reduced (p<0.0l), suggesting a saturable disposition of taurine from CSF. Distribution of taurine into the choroid plexus, cerebellum, olfactory bulb and cortex was similarly diminished, indicating that the saturable uptake of taurine into these tissues is responsible for the non-linear disposition. A pharmacokinetic model involving first order elimination and saturable distribution described these data adequately. The Michaelis-Menten rate constant estimated from in vivo elimination study is similar to that obtained in the in vitro uptake experiment. Collectively, our results demonstrate that taurine is transported in the choroid plexus via a $Na^+-dependent,saturable$ and apparently ${\beta}-amino$ acid selective mechanism. This process may be functionally relevant to taurine homeostasis in the brain.

  • PDF

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

Ti:LiNbO3 three-waveguide type traveling-wave optical modulator; outer fed, anti-symmetrical Detuning (Ti:LiNbO3 세 도파로형 진행파 광변조기;바깥입사, 반대칭 Detuning)

  • 이우진;정은주;피중호;김창민
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.375-384
    • /
    • 2004
  • Switching phenomenon of a three-waveguide optical coupler was analyzed by using the coupled mode theory, and the coupling-length of the device was calculated by means of the FDM. CPW traveling-wave electrodes were designed by the CMM and SOR simulation techniques so as to satisfy the conditions of phase-velocity and impedance matching. Traveling-wave modulators were fabricated on a z-cut LiNbO$_3$ substrate. Ti was in-diffused in LiNbO$_3$ to make waveguides and Au electrodes were built on the waveguides by the electroplating technique. Insertion loss and switching voltage of the optical modulator were about 4 ㏈ and 15.6V. Network analyzer was used to obtain S parameters and corresponding RF response. From the measurement, parameters of the traveling-wave electrodes were extracted as such Z$_{c}$=39.2 $\Omega$, Neff=2.48, and a0=0.0665/cm((GHz) (1/2)). The measured optical response R(w) was compared with the theoretically estimated and both responses were shown to agree well. The measurement results revealed that the ㏈ bandwidth turned out to be about 13 GHz.