• Title/Summary/Keyword: coupler loss

Search Result 181, Processing Time 0.021 seconds

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Manufacturing LNA Board for GPS Antenna and Proposal of Verification Method

  • Choi, Dong-Hun;Kim, Mi-Suk;Kim, Jong Seong;Son, Seok Bo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • This paper manufactured an active GPS antenna for ground vehicles and presented a method to verify the performances of the antenna and component technology of the low noise amplifier (LNA) board manufacturing. The manufactured GPS antenna is an active antenna where microstrip patch and LNA board were combined. The main performances were standing wave ratio, antenna gain, and axial ratio, and all satisfied the target specifications. The proposed component technology can be utilized as a basis data in which the performance of LNA board can be compensated in the mass production process inspection, and employed as a method to verify whether antennas are properly working in environmental tests.

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.

Analysis of Communication Characteristics on Contact wire and Messenger wire of Electric Railroad for Power Line Communication (전기 철도의 전력선 통신을 위한 전차선과 조가선의 통신 특성 분석)

  • Lee, Hui-Jun;Ahn, Seung-Ho;Kang, Seung-Wook;Lee, Jong-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.157-162
    • /
    • 2010
  • Power line communication, using 25[kV] high voltage of railway catenary, is to provide information which is real-time safety information for train operations and train workers in driving. Lots of noise were occupied in the contact wire by electrical and communication equipments. A signal attenuation was caused characteristics of the contact wire and messenger wire. For relaying communications to transmit information using the contact wire, catenary the noise and signal attenuation were investigated. And the final goal of the study was realized to transmit video information by power line communication on electric railway.

60 GHz Band Non-Radiative Dielectric Waveguide Mixer having the Waveguide Directional Coupler (도파관 방향성 결합기를 갖는 60 GHz 대역 Non-Radiative Dielectric 도파관 혼합기)

  • Yoo, Young-Geun;Choi, Jae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.397-403
    • /
    • 2008
  • In this paper, the mixer was implemented in the non-radiative dielectric waveguide that is the main component of 60 GHz band radio telecommunications equipment which a demand increases for the purpose of point-to-point communication network. As to the manufacture of the non-radiative dielectric waveguide mixer, it was the implementation of the dielectric line combiner to be most difficult. The thing which that gives shape to the curvature which is the dielectric line determined and the to place in the exact interval thing are easy. For this reason, it was very difficult to make in order to have the regular performance in the case of the mixer having the dielectric line combiner. In this paper, since the dielectric line combiner was replaced with the waveguide directional coupler and the manufacture was possible through a processing it had the characteristic that a combiner is fixed. In result, the productivity of a mixer was innovatively improved. The design frequency of the mixer implemented through this paper RF and LO are $51{\sim}64\;GHz$. IF Is $DC{\sim}\;GHz2$. The down conversion loss toward the RF input of $60{\sim}62\;GHz$ was measured by $10{\pm}1\;dB$ in the condition that LO is 10 dBm, 60 GHz.

Development of a Wideband Power Sensor for the Measurement of Wireless Power (무선 주파수 전력 측정을 위한 광대역 전력 센서 개발)

  • Hwang, Mun-Su;Na, In-Ho;Gu, Ja-Gyeong;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3600-3607
    • /
    • 2009
  • This paper describes the development of a power sensor for wireless signal over the ultra wideband range of 300~3800MHz with the detecting range of 150mW~150W. The proposed power sensor fundamentally has the function of not only detecting wireless power, but recognizing frequency and measuring VSWR. The development of the power sensor is completed through the design of dual directional coupler, design of power detector block which produces DC data using the corresponding RF input power level, and establishment of collecting the exact calibration data. The dual directional coupler has the operating frequency of 300~3800MHz with the 0.085dB of insertion loss, and directivity of 30dB at least at 3800MHz. The developed power sensor has the capability of power sensing with less than 0.25dB of resolution as well as measuring VSWR of 1.17~1.96 under the practical operating situation of very high power up to 150W at 300~3800MHz.

Size-Reduced Ring-Hybrid Coupler Using Phase-Inverting Ultra-Wideband Transitions and Its Frequency Doubler Application (초광대역 위상 역전 전이 구조를 이용한 소형화된 링 하이브리드 결합기 및 주파수 체배기 응용)

  • Song, Sun-Young;Kim, Young-Gon;Park, Jin-Hyun;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1037-1044
    • /
    • 2010
  • In this paper, a new size-reduced, wideband ring-hybrid coupler is presented, and a design of a planar single-balanced doubler using the ring-hybrid is shown. This ring-hybrid coupler employs a pair of ultra-wideband transitions for phase inversion, which consists of in-phase and out of-phase transitions providing a good amplitude and phase balances for wide frequency ranges. The implemented ring-hybrid is 65 % smaller than conventional ring-hybrids, and provides 92.5 % and 81.3 % bandwidth at $\sum$ and $\Delta$ ports, respectively. Thanks to good amplitude and phase balances over wide bandwidth, the ring-hybrid can be applied to implement various balanced components. The implemented single-balanced doubler utilizing the ring-hybrid exhibits typical conversion loss of 10.5 dB for the output frequency range of 4~12 GHz with fundamental suppression level of 30 dB. The performance was also well-predicted with the nonlinear circuit simulation.

An Application of Artificial Dielectric Substrate for Design of Size-reduced Directional Couplers (방향성결합기의 소형화를 위한 가유전체 기판구조의 응용)

  • Lim, Jong-Sik;Koo, Ja-Kyung;Lee, Jun;Lee, Jae-Hoon;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3169-3175
    • /
    • 2011
  • This paper describes the design of size-reduced directional coupler using the artificial dielectric substrate and its increased effective permittivity. Directional couplers are widely used in measuring RF power indirectly and coupling signal power. Artificial dielectric substrates have higher effective dielectric constant than standard dielectric substrate due to the lots of metalized via-holes, and the increased effective permittivity results in size-reduction of circuits. As a design example, 15dB directional couplers are designed on the standard substrate and artificial dielectric substrate and their size are compared. The size of the directional coupler using the artificial dielectric substrate is only 1/3 of that designed using the standard substrate, while the performances are preserved. In addition, the measured performances of the size-reduced coupler are well agreed with the simulated ones. The measured coupling coefficient, matching, and insertion loss at 2GHz are -14.62dB, -24.1dB, and -0.38dB, respectively.

Adiabatic Optical-fiber Tapers for Efficient Light Coupling between Silicon Waveguides and Optical Fibers (실리콘 도파로와 광섬유 사이의 효율적인 광 결합을 위한 아디아바틱 광섬유 테이퍼)

  • Son, Gyeongho;Choi, Jiwon;Jeong, Youngjae;Yu, Kyoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.213-217
    • /
    • 2020
  • In this study we report a wet-etching-based fabrication method for adiabatic optical-fiber tapers (OFTs), and describe their adiabaticity and HE11 mode evolution at a wavelength of 1550 nm. The profile of the fabricated system satisfies the adiabaticity properties well, and the far-field pattern from the etched OFT shows that the fundamental HE11 mode is maintained without a higher-order mode coupling throughout the tapers. In addition, the measured far-field pattern agrees well with the simulated result. The proposed adiabatic OFTs can be applied to a number of photonic applications, especially fiber-chip packages. Based on the fabricated adiabatic OFT structures, the optical transmission to the inversely tapered silicon waveguide shows large spatial-dimensional tolerances for 1 dB excess loss of ~60 ㎛ (silicon waveguide angle of 1°) and insertion loss of less than 0.4 dB (silicon waveguide angle of 4°), from the numerical simulation. The proposed adiabatic coupler shows the ultrabroadband coupling efficiency over the O- and C-bands.

Design of a KaBand Half-Height Waveguide Power Combiner (Ka-Band용 Half-Height Waveguide 전력 합성기 설계)

  • 빅필준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1218-1224
    • /
    • 2000
  • A half-height waveguide power combiner is designed and analyzed for Ka-band satellite application. The branch line directional coupler is utilized as a power combiner to achieve high port-to-port isolation and low insertion loss. The half height waveguide is adopted to reduce the volume and mass of a power combiner. In this paper a half height waveguide power combiner is designed and analyzed by FDTD and its performance is compared with that of a full-height waveguide power combiner. The designed half-height combiner having optimum order is manufactured and tested. The measurement shows that the designed half-height power combiner satisfies all the performance requirements (insertion loss less than 0.3 dB, reflection loss more than 20dB, port to port isolation more than 20 dB, and port to port phase difference within 5$^{\circ}$) in the satellite communication frequency band of 20.255 GHz to 21.255 GHz.

  • PDF