• Title/Summary/Keyword: coupled structural walls

Search Result 45, Processing Time 0.018 seconds

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN

  • Abdalla, Jamal A.;Saqan, Elias I.;Hawileh, Rami A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.547-567
    • /
    • 2014
  • Precast Seismic Structural Systems (PRESSS) provided an iterative procedure for obtaining optimum design of unbonded post-tensioned coupled precast concrete wall systems. Although PRESSS procedure is effective, however, it is lengthy and laborious. The purpose of this research is to employ Artificial Neural Network (ANN) to predict the optimum design parameters for such wall systems while avoiding the demanding iterative process. The developed ANN model is very accurate in predicting the nondimensional optimum design parameters related to post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by shear connectors to the design moment. The Mean Absolute Percent Error (MAPE) for the test data for these design parameters is around %1 and the correlation coefficient is almost equal to 1.0. The developed ANN model is then used to study the effect of different design parameters on wall behavior. It is observed that the design moment and the concrete strength have the most influence on the wall behavior as compared to other parameters. Several design examples were presented to demonstrate the accuracy and effectiveness of the ANN model.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

Efficiency assessment of L-profiles and pipe fore-poling pre-support systems in difficult geological conditions: a case study

  • Elyasi, Ayub;Moradi, Taher;Moharrami, Javad;Parnian, Saeid;Mousazadeh, Akbar;Nasseh, Sepideh
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1125-1142
    • /
    • 2016
  • Tunneling is one of the challenging tasks in civil engineering because it involves a variety of decision making and engineering judgment based on knowledge and experience. One of the challenges is to construct tunnels in risky areas under shallow overburden. In order to prevent the collapse of ceilings and walls of a large tunnels, in such conditions, either a sequential excavation method (SEM) or ground reinforcing method, or a combination of both, can be utilized. This research deals with the numerical modeling of L-profiles and pipe fore-poling pre-support systems in the adit tunnel in northwestern Iran. The first part of the adit tunnel has been drilled in alluvial material with very weak geotechnical parameters. Despite applying an SEM in constructing this tunnel, analyzing the results of numerical modeling done using FLAC3D, as well as observations during drilling, indicate the tunnel instability. To improve operational safety and to prevent collapse, pre-support systems, including pipe fore-poling and L-profiles were designed and implemented. The results of the numerical modeling coupled with monitoring during operation, as well as the results of instrumentation, indicate the efficacy of both these methods in tunnel collapse prevention. Moreover, the results of modeling using FLAC3D and SECTION BUILDER suggest a double angle with equal legs ($2L100{\times}100{\times}10mm$) in both box profile and tee array as an alternative section to pipe fore-poling system while neither $L80{\times}80{\times}8mm$ nor $2L80{\times}80{\times}8mm$ can sustain the axial and shear stresses exerted on pipe fore-poling system.