• Title/Summary/Keyword: coupled mechanics

Search Result 780, Processing Time 0.028 seconds

Advanced flutter simulation of flexible bridge decks

  • Szabo, Gergely;Gyorgyi, Jozsef;Kristof, Gergely
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.133-154
    • /
    • 2012
  • In this paper a bridge flutter prediction is performed by using advanced numerical simulation. Two novel approaches were developed simultaneously by utilizing the ANSYS v12.1 commercial software package. The first one is a fluid-structure interaction simulation involving the three-dimensional elastic motion of a bridge deck and the fluid flow around it. The second one is an updated forced oscillation technique based on the dynamic mode shapes of the bridge. An aeroelastic wind tunnel model was constructed in order to validate the numerical results. Good agreement between the numerical results and the measurements proves the applicability of the novel methods in bridge flutter assessment.

Crack driving force prediction based on finite element analysis using standard models

  • Brnic, Josip;Vukelic, Goran;Turkalj, Goran
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.601-609
    • /
    • 2012
  • Effect of different crack sizes on fracture criterion of some engineering materials was investigated in this work. Using finite element (FE) method coupled with a newly developed algorithm, J-integral values for different crack sizes were obtained for single-edge notched bend (SENB) and compact type (CT) specimen. Specimens with initial a/W ratio from 0.25 to 0.75 varying in crack size in steps of 0.125 were investigated. Several different materials, like 20MnMoNi55, 42CrMo4 and 50CrMo4, usually used in engineering structure, were investigated. For one of mentioned materials, numerical results were compared with experimental and their compatibility is visible.

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

A split kinetic energy solution scheme applied to various delta potentials in quantum mechanical systems

  • Chen, Yu-Hsin;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • In this work, we extend the previously developed split kinetic energy (dubbed KEP) method by Mineo and Chao (2012) by modifying the mass parameter to include the negative mass. We first show how to separate the total system into the subsystems with 3 attractive delta potentials by using the KEP method. For repulsive delta potentials, we introduce "negative" mass terms. Two cases are demonstrated using the "negative" mass terms for repulsive delta potential problems in quantum mechanics. Our work shows that the KEP solution scheme can be used to obtain not only the exact energies but also the exact wavefunctions very precisely.

Homogenized elastic properties of graphene for moderate deformations

  • Marenic, Eduard;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.137-155
    • /
    • 2015
  • This paper presents a simple procedure to obtain a substitute, homogenized mechanical response of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics simulation results and homogenization method. Moreover, a series of virtual experiments are performed on the representative graphene lattice. Following these results, the constitutive model development is based on the well-established continuum mechanics framework, that is, the non-linear membrane theory which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is shown on a simple model problem where the hyperelastic strain energy density function is chosen in polynomial form.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

Aviation stability analysis with coupled system criterion of theoretical solutions

  • C.C. Hung;T. Nguyen
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.221-239
    • /
    • 2023
  • In our research, we have proposed a solid solution for aviation analysis which can ensure the asymptotic stability of coupled nonlinear plants, according to the theoretical solutions and demonstrated method. Because this solution employed the scheme of specific novel theorem of control, the controllers are artificially combined by the parallel distribution computation to have a feasible solution given the random coupled systems with aviation stability analysis. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.