• Title/Summary/Keyword: coupled finite and boundary element method

Search Result 176, Processing Time 0.024 seconds

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System (구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용)

  • Lee, Cang-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

SONAR transducer analysis using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 사용한 쏘나 트랜스듀서의 분석)

  • 장순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1750-1753
    • /
    • 1997
  • This paper describes how the directivity pattern of the back-scattered sound pressure is distributed when a plane acoustic wave is incident on a righid spherical shell underwater. A coupled Finite Element-Boundary Element mehtod is developed as numerical technique. The result of the coupled FE-BE method is agreed with theoretical solution for algorithmic confirmation.

  • PDF

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

A coupled finite element/meshfreemoving boundary method for self-piercing riveting simulation

  • Cai, Wayne;Wang, Hui-Ping;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.257-270
    • /
    • 2013
  • The use of lightweight materials has been steadily increasing in the automotive industry, and presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials (such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint performance, it often requires a long trial-and-error testing of the SPR process. This is because current state of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving boundary algorithm to overcome these numerical difficulties. The simulation results are compared with physical measurements to demonstrate the effectiveness of the present method.

Natural vibration analysis of coaxial shells coupled with fluid

  • Jhung, Myung Jo;Choi, Young Hwan;Jeong, Kyeong Hoon
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.655-674
    • /
    • 2003
  • Investigated in this study are the natural vibration characteristics of the coaxial cylindrical shells coupled with a fluid. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier series expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of the fluid-filled annulus and the boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite element modeling.

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hakwoon;Lee, Sanghoon;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.87-95
    • /
    • 2005
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in $\theta z$ and $ r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hak-Woon;Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.846-852
    • /
    • 2004
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in ${\theta}z$ and $r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

  • PDF